按提交时间
按主题分类
按作者
按机构
您选择的条件: Renyu Hu
  • Spectropolarimetry as a Means to Address Cloud Composition and Habitability for a Cloudy Exoplanetary Atmosphere in the Habitable Zone

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In our solar system, the densely cloud-covered atmosphere of Venus stands out as an example of how polarimetry can be used to gain information on cloud composition and particle mean radius. With current interest running high on discovering and characterizing extrasolar planets in the habitable zone where water exists in the liquid state, making use of spectropolarimetric measurements of directly-imaged exoplanets could provide key information unobtainable through other means. In principle, spectropolarimetric measurements can determine if acidity causes water activities in the clouds to be too low for life. To this end, we show that a spectropolarimeter measurement over the range 400 nm - 1000 nm would need to resolve linear polarization to a precision of about 1% or better for reflected starlight from an optically thick cloud-enshrouded exoplanet. We assess the likelihood of achieving this goal by simulating measurements from a notional spectropolarimeter as part of a starshade configuration for a large space telescope (a HabEx design, but for a 6 m diameter primary mirror). Our simulations include consideration of noise from a variety of sources. We provide guidance on limits that would need to be levied on instrumental polarization to address the science issues we discuss. For photon-limited noise, integration times would need to be of order one hour for a large radius (10 Earth radii) planet to more than 100 hours for smaller exoplanets depending on the star-planet separation, planet radius, phase angle and desired uncertainty. We discuss implications for surface chemistry and habitability.

  • Constraints on the Size and Composition of the Ancient Martian Atmosphere from Coupled CO2-N2-Ar Isotopic Evolution Models

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Present-day Mars is cold and dry, but mineralogical and morphological evidence shows that liquid-water existed on the surface of ancient Mars. In order to explain this evidence and assess ancient Mars's habitability, one must understand the size and composition of the ancient atmosphere. Here we place constraints on the ancient Martian atmosphere by modeling the coupled, self-consistent evolution of atmospheric CO2, N2, and Ar on Mars from 3.8 billion years ago (Ga) to the present. Our model traces the evolution of these species' abundances and isotopic composition caused by atmospheric escape, volcanic outgassing, and crustal interaction. Using a Markov-Chain Monte Carlo method to explore a plausible range of parameters, we find hundreds of thousands of model solutions that recreate the modern Martian atmosphere. These solutions indicate that Mars's atmosphere contained 0.3-1.5 bar CO2 and 0.1-0.5 bar N2 at 3.8 Ga. The global volume of deposited carbonates critically determines the ancient atmospheric composition. For example, a ~1 bar CO2 ancient atmosphere with 0.2-0.4 bar N2 requires ~0.9 bar CO2 deposited in carbonates primarily in open-water systems. With the joint analysis of C, N, and Ar isotopes, we refine the constraints on the relative strengths of outgassing and sputtering, leading to an indication of a reduced early mantle from which the outgassing is sourced. Our results indicate that a CO2-N2 atmosphere with a potential H2 component on ancient Mars is consistent with Mars's geochemical evolution and may explain the evidence for its past warm and wet climate.

  • A nitrogen-rich atmosphere on ancient Mars consistent with isotopic evolution models

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The ratio of nitrogen isotopes in the Martian atmosphere is a key constraint on the planet's atmospheric evolution. However, enrichment of the heavy isotope expected due to atmospheric loss from sputtering and photochemical processes is greater than measurements. A massive, multi-bar early CO2-dominated atmosphere and recent volcanic outgassing have been proposed to explain this discrepancy, and many previous models have assumed atmospheric nitrogen rapidly reached a steady state where loss to space balanced volcanic outgassing. Here we show using time-dependent models that the abundance and isotopic composition of nitrogen in the Martian atmosphere can be explained by a family of evolutionary scenarios in which the initial partial pressure of nitrogen is sufficiently high that a steady state is not reached and nitrogen levels gradually decline to present-day values over 4 billion years. Our solutions do not require a multi-bar early CO2 atmosphere and are consistent with volcanic outgassing indicated by both geologic mapping and the atmospheric 36Ar/38Ar ratio. Monte Carlo simulations that include these scenarios estimate that the partial pressure of N2 was 60 - 740 mbar (90% confidence, with a median value of 310 mbar) at 3.8 billion years ago when the valley networks formed. We suggest that such a high nitrogen partial pressure could have contributed substantially to warming on early Mars.

  • A transmission spectrum of the sub-Earth planet L98-59~b in 1.1-1.7 $\mu$m

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: With the increasing number of planets discovered by TESS, the atmospheric characterization of small exoplanets is accelerating. L98-59 is a M-dwarf hosting a multi-planet system, and so far, four small planets have been confirmed. The innermost planet b is $\sim15\%$ smaller and $\sim60\%$ lighter than Earth, and should thus have a predominantly rocky composition. The Hubble Space Telescope observed five primary transits of L98-59b in $1.1-1.7\ \mu$m, and here we report the data analysis and the resulting transmission spectrum of the planet. We measure the transit depths for each of the five transits and, by combination, we obtain a transmission spectrum with an overall precision of $\sim20$ ppm in for each of the 18 spectrophotometric channels. With this level of precision, the transmission spectrum does not show significant modulation, and is thus consistent with a planet without any atmosphere or a planet having an atmosphere and high-altitude clouds or haze. The scenarios involving an aerosol-free, H$_2$-dominated atmosphere with H$_2$O or CH$_4$ are inconsistent with the data. The transmission spectrum also disfavors, but does not rules out, an H$_2$O-dominated atmosphere without clouds. A spectral retrieval process suggests that an H$_2$-dominated atmosphere with HCN and clouds or haze may be the preferred solution, but this indication is non-conclusive. Future James Webb Space Telescope observations may find out the nature of the planet among the remaining viable scenarios.

  • Early Release Science of the Exoplanet WASP-39b with JWST NIRSpec G395H

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to an exoplanet's chemical inventory requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R$\sim$600) transmission spectrum of an exoplanet atmosphere between 3-5 $\mu$m covering multiple absorption features for the Saturn-mass exoplanet WASP-39b, obtained with JWST NIRSpec G395H. Our observations achieve 1.46x photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO$_2$ (28.5$\sigma$) and H$_2$O (21.5$\sigma$), and identify SO$_2$ as the source of absorption at 4.1 $\mu$m (4.8$\sigma$). Best-fit atmospheric models range between 3 and 10x solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO$_2$, underscore the importance of characterising the chemistry in exoplanet atmospheres, and showcase NIRSpec G395H as an excellent mode for time series observations over this critical wavelength range.

  • Unveiling shrouded oceans on temperate sub-Neptunes via transit signatures of solubility equilibria vs. gas thermochemistry

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The recent discovery and initial characterization of sub-Neptune-sized exoplanets that receive stellar irradiance of approximately Earth's raised the prospect of finding habitable planets in the coming decade, because some of these temperate planets may support liquid water oceans if they do not have massive H2/He envelopes and are thus not too hot at the bottom of the envelopes. For planets larger than Earth, and especially planets in the 1.7-3.5 R_Earth population, the mass of the H2/He envelope is typically not sufficiently constrained to assess the potential habitability. Here we show that the solubility equilibria vs. thermochemistry of carbon and nitrogen gases results in observable discriminators between small H2 atmospheres vs. massive ones, because the condition to form a liquid-water ocean and that to achieve the thermochemical equilibrium are mutually exclusive. The dominant carbon and nitrogen gases are typically CH4 and NH3 due to thermochemical recycling in a massive atmosphere of a temperate planet, and those in a small atmosphere overlying a liquid-water ocean are most likely CO2 and N2, followed by CO and CH4 produced photochemically. NH3 is depleted in the small atmosphere by dissolution into the liquid-water ocean. These gases lead to distinctive features in the planet's transmission spectrum, and a moderate number of repeated transit observations with the James Webb Space Telescope should tell apart a small atmosphere vs. a massive one on planets like K2-18 b. This method thus provides a way to use near-term facilities to constrain the atmospheric mass and habitability of temperate sub-Neptune exoplanets.

  • Photochemistry and Spectral Characterization of Temperate and Gas-Rich Exoplanets

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Exoplanets that receive stellar irradiance of approximately Earth's or less have been discovered and many are suitable for spectral characterization. Here we focus on the temperate planets that have massive H2-dominated atmospheres, and trace the chemical reactions and transport following the photodissociation of H2O, CH4, NH3, and H2S, with K2-18 b, PH2 b, and Kepler-167 e representing temperate/cold planets around M and G/K stars. We find that NH3 is likely depleted by photodissociation to the cloud deck on planets around G/K stars but remains intact in the middle atmosphere of planets around M stars. A common phenomenon on temperate planets is that the photodissociation of NH3 in presence of CH4 results in HCN as the main photochemical product. The photodissociation of CH4 together with H2O leads to CO and CO2, and the synthesis of hydrocarbon is suppressed. Temperate planets with super-solar atmospheric metallicity and appreciable internal heat may have additional CO and CO2 from the interior and less NH3 and thus less HCN. Our models of K2-18 b can explain the transmission spectrum measured by Hubble, and indicate that future observations in 0.5-5.0 um would provide the sensitivity to detect the equilibrium gases CH4, H2O, and NH3, the photochemical gas HCN, as well as CO2 in some cases. Temperate and H2-rich exoplanets are thus laboratories of atmospheric chemistry that operate in regimes not found in the Solar System, and spectral characterization of these planets in transit or reflected starlight promises to greatly expand the types of molecules detected in exoplanet atmospheres.

  • Early Release Science of the exoplanet WASP-39b with JWST NIRCam

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution, and high precision that, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST's Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0 - 4.0 $\mu$m, exhibit minimal systematics, and reveal well-defined molecular absorption features in the planet's spectrum. Specifically, we detect gaseous H$_2$O in the atmosphere and place an upper limit on the abundance of CH$_4$. The otherwise prominent CO$_2$ feature at 2.8 $\mu$m is largely masked by H$_2$O. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1-100$\times$ solar (i.e., an enrichment of elements heavier than helium relative to the Sun) and a sub-stellar carbon-to-oxygen (C/O) ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation or disequilibrium processes in the upper atmosphere.

  • The transmission spectrum of the potentially rocky planet L 98-59 c

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present observations of the 1.35+/-0.07 Earth-radius planet L 98-59 c using Wide Field Camera~3 on the Hubble Space Telescope. L 98-59 is a nearby (10.6 pc), bright (H=7.4 mag), M3V star that harbors three small, transiting planets. As one of the closest known transiting multi-planet systems, L 98-59 offers one of the best opportunities to probe and compare the atmospheres of rocky planets that formed in the same stellar environment. We measured the transmission spectrum of L 98-59 c during a single transit, with the extracted spectrum showing marginal evidence for wavelength-dependent transit depth variations which would indicate the presence of an atmosphere. Forward modeling was used to constrain possible atmospheric compositions of the planet based on the shape of the transmission spectrum. Although L 98-59 is a fairly quiet star, we have seen evidence for stellar activity, and therefore we cannot rule out a scenario where the source of the signal originates with inhomogeneities on the host-star surface. While intriguing, our results are inconclusive and additional data is needed to verify any atmospheric signal. Fortunately, additional data will soon be collected from both HST and JWST. Should this result be confirmed with additional data, L 98-59 c would be the first planet smaller than 2 Earth-radii with a detected atmosphere, and among the first small planets with a known atmosphere to be studied in detail by the JWST.

  • Starshade Exoplanet Data Challenge

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Starshade in formation flight with a space telescope is a rapidly maturing technology that would enable imaging and spectral characterization of small planets orbiting nearby stars in the not-too-distant future. While performance models of the starshade-assisted exoplanet imaging have been developed and used to design future missions, their results have not been verified from the analyses of synthetic images. Following a rich history of using community data challenges to evaluate image-processing capabilities in astronomy and exoplanet fields, the Starshade Technology Development to TRL5 (S5), a focused technology development activity managed by the NASA Exoplanet Exploration Program, is organizing and implementing a starshade exoplanet data challenge. The purpose of the data challenge is to validate the flow down of requirements from science to key instrument performance parameters and to quantify the required accuracy of noisy background calibration with synthetic images. This data challenge distinguishes itself from past efforts in the exoplanet field in that (1) it focuses on the detection and spectral characterization of small planets in the habitable zones of nearby stars, and (2) it develops synthetic images that simultaneously include multiple background noise terms -- some specific to starshade observations -- including residual starlight, solar glint, exozodiacal light, detector noise, as well as variability resulting from starshade's motion and telescope jitter. In this paper, we provide an overview of the design and rationale of the data challenge. Working with data challenge participants, we expect to achieve improved understanding of the noise budget and background calibration in starshade-assisted exoplanet observations in the context of both Starshade Rendezvous with Roman and HabEx.

  • Direct Evidence of Photochemistry in an Exoplanet Atmosphere

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Photochemistry is a fundamental process of planetary atmospheres that is integral to habitability, atmospheric composition and stability, and aerosol formation. However, no unambiguous photochemical products have been detected in exoplanet atmospheres to date. Here we show that photochemically produced sulphur dioxide (SO$_2$) is present in the atmosphere of the hot, giant exoplanet WASP-39b, as constrained by data from the JWST Transiting Exoplanet Early Release Science Program and informed by a suite of photochemical models. We find that SO$_2$ is produced by successive oxidation of sulphur radicals freed when hydrogen sulphide (H$_2$S) is destroyed. The SO$_2$ distribution computed by the photochemical models robustly explains the 4.05 $\mu$m spectral feature seen in JWST transmission spectra [Rustamkulov et al.(submitted), Alderson et al.(submitted)] and leads to observable features at ultraviolet and thermal infrared wavelengths not available from the current observations. The sensitivity of the SO$_2$ feature to the enrichment of heavy elements in the atmosphere ("metallicity") suggests that it can be used as a powerful tracer of atmospheric properties, with our results implying a metallicity of $\sim$10$\times$ solar for WASP-39b. Through providing improved constraints on bulk metallicity and sulphur abundance, the detection of SO$_2$ opens a new avenue for the investigation of giant-planet formation. Our work demonstrates that sulphur photochemistry may be readily observable for exoplanets with super-solar metallicity and equilibrium temperatures $\gtrsim$750 K. The confirmation of photochemistry through the agreement between theoretical predictions and observational data is pivotal for further atmospheric characterisation studies.