Your conditions: Luwenjia Zhou
  • The hidden side of cosmic star formation at z > 3: Bridging optically-dark and Lyman break galaxies with GOODS-ALMA

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: Our current understanding of the cosmic star formation history at z>3 is primarily based on UV-selected galaxies (i.e., LBGs). Recent studies of H-dropouts have revealed that we may be missing a large proportion of star formation that is taking place in massive galaxies at z>3. In this work, we extend the H-dropout criterion to lower masses to select optically dark/faint galaxies (OFGs), in order to complete the census between LBGs and H-dropouts. Our criterion (H> 26.5 mag & [4.5] < 25 mag) combined with a de-blending technique is designed to select not only extremely dust-obscured massive galaxies but also normal star-forming galaxies. In total, we identified 27 OFGs at z_phot > 3 (z_med=4.1) in the GOODS-ALMA field, covering a wide distribution of stellar masses with log($M_{\star}$/$M_{\odot}$) = 9.4-11.1. We find that up to 75% of the OFGs with log($M_{\star}$/$M_{\odot}$) = 9.5-10.5 were neglected by previous LBGs and H-dropout selection techniques. After performing stacking analyses, the OFGs exhibit shorter gas depletion timescales, slightly lower gas fractions, and lower dust temperatures than typical star-forming galaxies. Their SFR_tot (SFR_ IR+SFR_UV) is much larger than SFR_UVcorr (corrected for dust extinction), with SFR_tot/SFR_UVcorr = $8\pm1$, suggesting the presence of hidden dust regions in the OFGs that absorb all UV photons. The average dust size measured by a circular Gaussian model fit is R_e(1.13 mm)=1.01$\pm$0.05 kpc. We find that the cosmic SFRD at z>3 contributed by massive OFGs is at least two orders of magnitude higher than the one contributed by equivalently massive LBGs. Finally, we calculate the combined contribution of OFGs and LBGs to the cosmic SFRD at z=4-5 to be 4 $\times$ 10$^{-2}$ $M_{\odot}$ yr$^{-1}$Mpc$^{-3}$, which is about 0.15 dex (43%) higher than the SFRD derived from UV-selected samples alone at the same redshift.

  • The hidden side of cosmic star formation at z > 3: Bridging optically-dark and Lyman break galaxies with GOODS-ALMA

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: Our current understanding of the cosmic star formation history at z>3 is primarily based on UV-selected galaxies (i.e., LBGs). Recent studies of H-dropouts have revealed that we may be missing a large proportion of star formation that is taking place in massive galaxies at z>3. In this work, we extend the H-dropout criterion to lower masses to select optically dark/faint galaxies (OFGs), in order to complete the census between LBGs and H-dropouts. Our criterion (H> 26.5 mag & [4.5] < 25 mag) combined with a de-blending technique is designed to select not only extremely dust-obscured massive galaxies but also normal star-forming galaxies. In total, we identified 27 OFGs at z_phot > 3 (z_med=4.1) in the GOODS-ALMA field, covering a wide distribution of stellar masses with log($M_{\star}$/$M_{\odot}$) = 9.4-11.1. We find that up to 75% of the OFGs with log($M_{\star}$/$M_{\odot}$) = 9.5-10.5 were neglected by previous LBGs and H-dropout selection techniques. After performing stacking analyses, the OFGs exhibit shorter gas depletion timescales, slightly lower gas fractions, and lower dust temperatures than typical star-forming galaxies. Their SFR_tot (SFR_ IR+SFR_UV) is much larger than SFR_UVcorr (corrected for dust extinction), with SFR_tot/SFR_UVcorr = $8\pm1$, suggesting the presence of hidden dust regions in the OFGs that absorb all UV photons. The average dust size measured by a circular Gaussian model fit is R_e(1.13 mm)=1.01$\pm$0.05 kpc. We find that the cosmic SFRD at z>3 contributed by massive OFGs is at least two orders of magnitude higher than the one contributed by equivalently massive LBGs. Finally, we calculate the combined contribution of OFGs and LBGs to the cosmic SFRD at z=4-5 to be 4 $\times$ 10$^{-2}$ $M_{\odot}$ yr$^{-1}$Mpc$^{-3}$, which is about 0.15 dex (43%) higher than the SFRD derived from UV-selected samples alone at the same redshift.

  • The molecular gas resolved by ALMA in the low-metallicity dwarf merging galaxy Haro 11

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: The physical mechanisms for starburst or quenching in less massive ($M_* < 10^{10} M_{\odot}$) galaxies are unclear. The merger is one of the inescapable processes referred to as both starburst and quenching in massive galaxies. However, the effects of the merger on star formation in dwarf galaxies and their evolution results are still uncertain. We aim to explore how to trigger and quench star formation in dwarf galaxies by studying the metal-poor gas-rich dwarf mergers based on the multi-band observations at a spatial resolution of $\sim$ 460 pc. We use the archival data of ALMA (band 3, 8) and VLT/MUSE to map CO($J=$1-0), [CI]($^3$P$_1 - ^3$P$_0$), and H$\alpha$ emission in one of the most extreme starburst merging dwarf galaxies, Haro 11. We find the molecular gas is assembled around the central two star-forming regions. The molecular/ionized gas and stellar components show complex kinematics, indicating that the gas is probably at a combined stage of collision of clouds and feedback from star formation. The peak location and distribution of [CI](1-0) strongly resemble the CO(1-0) emission, meaning that it might trace the same molecular gas as CO in such a dwarf merger starburst galaxy. The enhancement of line ratios ($\sim 0.5$) of [CI]/CO around knot C is probably generated by the dissociation of CO molecules by cosmic rays and far-ultraviolet photons. Globally, Haro 11 and its star-forming regions share similar SFEs as the high-$z$ starburst galaxies or the clumps in nearby (U)LIRGs. Given the high SFE, sSFR, small stellar mass, low metallicity, and deficient HI gas, Haro 11 could be an analog of high-$z$ dwarf starburst and the potential progenitor of the nearby less massive elliptical galaxies. The significantly smaller turbulent pressure and viral parameter will probably trigger the intense starbursts. We also predict that it will quench at $M_* < 8.5 \times 10^9 M_{\odot}$.