您选择的条件: Brett H. Andrews
  • Are Milky-Way-like galaxies like the Milky Way? A view from SDSS-IV/MaNGA

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In this paper, we place the Milky Way (MW) in the context of similar-looking galaxies in terms of their star-formation and chemical evolution histories. We select a sample of 138 Milky-Way analogues (MWAs) from the SDSS-IV/MaNGA survey based on their masses, Hubble types, and bulge-to-total ratios. To compare their chemical properties to the detailed spatially-resolved information available for the MW, we use a semi-analytic spectral fitting approach, which fits a self-consistent chemical-evolution and star-formation model directly to the MaNGA spectra. We model the galaxies' inner and outer regions assuming that some of the material lost in stellar winds falls inwards. We also incorporate chemical enrichment from type II and Ia supernovae to follow the alpha-element abundance at different metallicities and locations. We find some MWAs where the stellar properties closely reproduce the distribution of age, metallicity, and alpha enhancement at both small and large radii in the MW. In these systems, the match is driven by the longer timescale for star formation in the outer parts, and the inflow of enriched material to the central parts. However, other MWAs have very different histories. These divide into two categories: self-similar galaxies where the inner and outer parts evolve identically; and centrally-quenched galaxies where there is very little evidence of late-time central star formation driven by material accreted from the outer regions. We find that, although selected to be comparable, there are subtle morphological differences between galaxies in these different classes, and that the centrally-quenched galaxies formed their stars systematically earlier.

  • DESI Survey Validation Spectra Reveal an Increasing Fraction of Recently Quenched Galaxies at $z\sim1$

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We utilize $\sim17000$ bright Luminous Red Galaxies (LRGs) from the novel Dark Energy Spectroscopic Instrument Survey Validation spectroscopic sample, leveraging its deep ($\sim2.5$ hour/galaxy exposure time) spectra to characterize the contribution of recently quenched galaxies to the massive galaxy population at $0.41$) of our sample of recently quenched galaxies represents the largest spectroscopic sample of post-starburst galaxies at that epoch. At $0.411.2$) LRGs by measuring the fraction of stellar mass each galaxy formed in the Gyr before observation, $f_{\mathrm{1 Gyr}}$. Although galaxies with $f_{\mathrm{1 Gyr}}>0.1$ are rare at $z\sim0.4$ ($\lesssim 0.5\%$ of the population), by $z\sim0.8$ they constitute $\sim3\%$ of massive galaxies. Relaxing this threshold, we find that galaxies with $f_\mathrm{1 Gyr}>5\%$ constitute $\sim10\%$ of the massive galaxy population at $z\sim0.8$. We also identify a small but significant sample of galaxies at $z=1.1-1.3$ that formed with $f_{\mathrm{1 Gyr}}>50\%$, implying that they may be analogues to high-redshift quiescent galaxies that formed on similar timescales. Future analysis of this unprecedented sample promises to illuminate the physical mechanisms that drive the quenching of massive galaxies after cosmic noon.

  • Calibrated Predictive Distributions via Diagnostics for Conditional Coverage

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Uncertainty quantification is crucial for assessing the predictive ability of AI algorithms. A large body of work (including normalizing flows and Bayesian neural networks) has been devoted to describing the entire predictive distribution (PD) of a target variable Y given input features $\mathbf{X}$. However, off-the-shelf PDs are usually far from being conditionally calibrated; i.e., the probability of occurrence of an event given input $\mathbf{X}$ can be significantly different from the predicted probability. Most current research on predictive inference (such as conformal prediction) concerns constructing calibrated prediction sets only. It is often believed that the problem of obtaining and assessing entire conditionally calibrated PDs is too challenging. In this work, we show that recalibration, as well as diagnostics of entire PDs, are indeed attainable goals in practice. Our proposed method relies on the idea of regressing probability integral transform (PIT) scores against $\mathbf{X}$. This regression gives full diagnostics of conditional coverage across the entire feature space and can be used to recalibrate misspecified PDs. We benchmark our corrected prediction bands against oracle bands and state-of-the-art predictive inference algorithms for synthetic data, including settings with a distributional shift. Finally, we produce calibrated PDs for two applications: (i) probabilistic nowcasting based on sequences of satellite images, and (ii) estimation of galaxy distances based on imaging data (photometric redshifts).