您选择的条件: Si Zeng
  • Estimating Atmospheric Parameters from LAMOST Low-Resolution Spectra with Low SNR

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) acquired tens of millions of low-resolution stellar spectra. The large amount of the spectra result in the urgency to explore automatic atmospheric parameter estimation methods. There are lots of LAMOST spectra with low signal-to-noise ratios (SNR), which result in a sharp degradation on the accuracy of their estimations. Therefore, it is necessary to explore better estimation methods for low-SNR spectra. This paper proposed a neural network-based scheme to deliver atmospheric parameters, LASSO-MLPNet. Firstly, we adopt a polynomial fitting method to obtain pseudo-continuum and remove it. Then, some parameter-sensitive features in the existence of high noises were detected using Least Absolute Shrinkage and Selection Operator (LASSO). Finally, LASSO-MLPNet used a Multilayer Perceptron network (MLPNet) to estimate atmospheric parameters $T_{\mathrm{eff}}$, log $g$ and [Fe/H]. The effectiveness of the LASSO-MLPNet was evaluated on some LAMOST stellar spectra of the common star between APOGEE (The Apache Point Observatory Galactic Evolution Experiment) and LAMOST. it is shown that the estimation accuracy is significantly improved on the stellar spectra with $10<\mathrm{SNR}\leq80$. Especially, LASSO-MLPNet reduces the mean absolute error (MAE) of the estimation of $T_{\mathrm{eff}}$, log $g$ and [Fe/H] from (144.59 K, 0.236 dex, 0.108 dex) (LASP) to (90.29 K, 0.152 dex, 0.064 dex) (LASSO-MLPNet) on the stellar spectra with $10<\mathrm{SNR}\leq20$. To facilitate reference, we release the estimates of the LASSO-MLPNet from more than 4.82 million stellar spectra with $10<\mathrm{SNR}\leq80$ and 3500 < SNR$g$ $\leq$ 6500 as a value-added output.

  • Estimation of stellar atmospheric parameters from LAMOST DR8 low-resolution spectra with 20$\leq$SNR$<$30

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The accuracy of the estimated stellar atmospheric parameter decreases evidently with the decreasing of spectral signal-to-noise ratio (SNR) and there are a huge amount of this kind observations, especially in case of SNR$<$30. Therefore, it is helpful to improve the parameter estimation performance for these spectra and this work studied the ($T_\texttt{eff}, \log~g$, [Fe/H]) estimation problem for LAMOST DR8 low-resolution spectra with 20$\leq$SNR$<$30. We proposed a data-driven method based on machine learning techniques. Firstly, this scheme detected stellar atmospheric parameter-sensitive features from spectra by the Least Absolute Shrinkage and Selection Operator (LASSO), rejected ineffective data components and irrelevant data. Secondly, a Multi-layer Perceptron (MLP) method was used to estimate stellar atmospheric parameters from the LASSO features. Finally, the performance of the LASSO-MLP was evaluated by computing and analyzing the consistency between its estimation and the reference from the APOGEE (Apache Point Observatory Galactic Evolution Experiment) high-resolution spectra. Experiments show that the Mean Absolute Errors (MAE) of $T_\texttt{eff}, \log~g$, [Fe/H] are reduced from the LASP (137.6 K, 0.195 dex, 0.091 dex) to LASSO-MLP (84.32 K, 0.137 dex, 0.063 dex), which indicate evident improvements on stellar atmospheric parameter estimation. In addition, this work estimated the stellar atmospheric parameters for 1,162,760 low-resolution spectra with 20$\leq$SNR$<$30 from LAMOST DR8 using LASSO-MLP, and released the estimation catalog, learned model, experimental code, trained model, training data and test data for scientific exploration and algorithm study.