您选择的条件: Douglas Scott
  • The role of $T_0$ in CMB anisotropy measurements

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The quantity $T_0$, the cosmic microwave background (CMB) monopole, is an often neglected seventh parameter of the standard cosmological model. As well as its variation affecting the physics of the CMB, the measurement of $T_0$ is also used to calibrate the anisotropies, via the orbital dipole. We point out that it is easy to misestimate the effect of $T_0$ because the CMB anisotropies are conventionally provided in temperature units. In fact the anisotropies are most naturally described as dimensionless and we argue for restoring the convention of working with $\Delta T/T$ rather than $\Delta T$. As a free cosmological parameter, $T_0$ most naturally only impacts the CMB power spectra through late-time effects. Thus if we ignore the COBE-FIRAS measurement, current CMB data only weakly constrain $T_0$. Even ideal future CMB data can at best provide a percent-level constraint on $T_0$, although adding large-scale structure data will lead to further improvement. The FIRAS measurement is so precise that its uncertainty negligibly effects most, but not all, cosmological parameter inferences for current CMB experiments. However, if we eventually want to extract all available information from CMB power spectra measured to multipoles $\ell\simeq5000$, then we will need a better determination of $T_0$ than is currently available.

  • VLA Legacy Survey of Molecular Gas in Massive Star-forming Galaxies at High Redshift

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present initial results of an ongoing survey with the Karl G. Jansky Very Large Array targeting the CO($J$ = 1-0) transition in a sample of 30 submillimeter-selected, dusty star-forming galaxies at $z =$ 2-5 with existing mid--$J$ CO detections from ALMA and NOEMA, of which 17 have been fully observed. We detect CO(1-0) emission in 11 targets, along with three tentative ($\sim$1.5-2$\sigma$) detections; three galaxies are undetected. Our results yield total molecular gas masses of 6-23$\times$10$^{10}$ ($\alpha_\mathrm{CO}$/1) M$_\odot$, with gas mass fractions, $f_\mathrm{gas}$=$M_\mathrm{mol}$/($M_*$+$M_\mathrm{mol}$), of 0.1-0.8 and a median depletion time of (140$\pm$70) Myr. We find median CO excitation ratios of $r_{31}$ = 0.75$\pm$0.39 and $r_{41}$ = 0.63$\pm$0.44, with a significant scatter. We find no significant correlation between the excitation ratio and a number of key parameters such as redshift, CO(1-0) line width or $\Sigma_\mathrm{SFR}$. We only find a tentative positive correlation between $r_{41}$ and the star-forming efficiency, but we are limited by our small sample size. Finally, we compare our results to predictions from the SHARK semi-analytical model, finding a good agreement between the molecular gas masses, depletion times and gas fractions of our sources and their SHARK counterparts. Our results highlight the heterogeneous nature of the most massive star-forming galaxies at high-redshift, and the importance of CO(1--0) observations to robustly constrain their total molecular gas content and ISM properties.

  • Brightest Cluster Galaxy Formation in the z=4.3 Protocluster SPT2349-56: Discovery of a Radio-Loud AGN

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We have observed the z=4.3 protocluster SPT2349-56 with ATCA with the aim of detecting radio-loud active galactic nuclei (AGN) amongst the ~30 submillimeter galaxies identified in the structure. We detect the central complex of SMGs at 2.2\,GHz with a luminosity of L_2.2=(4.42pm0.56)x10^{25} W/Hz. The ASKAP also detects the source at 888 MHz, constraining the radio spectral index to alpha=-1.6pm0.3, consistent with ATCA non-detections at 5.5 and 9GHz, and implying L_1.4(rest)=(2.4pm0.3)x10^{26}W/Hz. This radio luminosity is about 100 times higher than expected from star formation, assuming the usual FIR-radio correlation, which is a clear indication of an AGN driven by a forming brightest cluster galaxy (BCG). None of the SMGs in SPT2349-56 show signs of AGN in any other diagnostics available to us (notably 12CO out to J=16, OH163um, CII/IR, and optical spectra), highlighting the radio continuum as a powerful probe of obscured AGN in high-z protoclusters. No other significant radio detections are found amongst the cluster members, consistent with the FIR-radio correlation. We compare these results to field samples of radio sources and SMGs, along with the 22 SPT-SMG gravitational lenses also observed in the ATCA program, as well as powerful radio galaxies at high redshifts. Our results allow us to better understand the effects of this gas-rich, overdense environment on early supermassive black hole (SMBH) growth and cluster feedback. We estimate that (3.3pm0.7)x10^{38} W of power are injected into the growing ICM by the radio-loud AGN, whose energy over 100Myr is comparable to the binding energy of the gas mass of the central halo. The AGN power is also comparable to the instantaneous energy injection from supernova feedback from the 23 catalogued SMGs in the core region of 120kpc projected radius. The SPT2349-56 radio-loud AGN may be providing strong feedback on a nascent ICM.