按提交时间
按主题分类
按作者
按机构
您选择的条件: M. Damasso
  • A CHEOPS-enhanced view of the HD3167 system

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Much remains to be understood about the nature of exoplanets smaller than Neptune, most of which have been discovered in compact multi-planet systems. With its inner ultra-short period planet b aligned with the star and two larger outer planets d-c on polar orbits, the multi-planet system HD 3167 features a peculiar architecture and offers the possibility to investigate both dynamical and atmospheric evolution processes. To this purpose we combined multiple datasets of transit photometry and radial velocimetry (RV) to revise the properties of the system and inform models of its planets. This effort was spearheaded by CHEOPS observations of HD 3167b, which appear inconsistent with a purely rocky composition despite its extreme irradiation. Overall the precision on the planetary orbital periods are improved by an order of magnitude, and the uncertainties on the densities of the transiting planets b and c are decreased by a factor of 3. Internal structure and atmospheric simulations draw a contrasting picture between HD 3167d, likely a rocky super-Earth that lost its atmosphere through photo-evaporation, and HD 3167c, a mini-Neptune that kept a substantial primordial gaseous envelope. We detect a fourth, more massive planet on a larger orbit, likely coplanar with HD 3167d-c. Dynamical simulations indeed show that the outer planetary system d-c-e was tilted, as a whole, early in the system history, when HD 3167b was still dominated by the star influence and maintained its aligned orbit. RV data and direct imaging rule out that the companion that could be responsible for the present-day architecture is still bound to the HD\,3167 system. Similar global studies of multi-planet systems will tell how many share the peculiar properties of the HD3167 system, which remains a target of choice for follow-up observations and simulations.

  • Espresso observations of HE 0107$-$5240 and other CEMP-no stars with $\rm [Fe/H]\le -4.5$

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: HE 0107$-$5240 is a hyper metal-poor star with $\rm [Fe/H]=-5.39$. We performed high-res observations with the ESPRESSO spectrograph at the VLT to constrain the kinematical properties of the binary system HE 0107$-$5240 and to probe the binarity of the sample of 8 most metal-poor stars with $\rm [Fe/H]<-4.5$. Radial velocities are obtained by using cross-correlation in the interval 4200$-$4315A, which contains the strong CH band, against a template in an iterative process. A Bayesian method is applied to calculate the orbit by using the ESPRESSO measurements and others from the literature. A chemical analysis has also been performed in HE0107$-$5240 by means of spectral synthesis. Observations of HE 0107$-$5240 spanning more than 3 years show a monotonic decreasing trend in radial velocity at a rate of approximately by 0.5 ms$^{-1}$d$^{-1}$. The period is constrained at $P_{\rm orb} = 13009_{-1370}^{+1496}$d. New more stringent upper-limits have been found for several elements: a)[Sr/Fe] and [Ba/Fe] are lower than $-0.76$ and $+0.2$ respectively, confirming the star is a CEMP-no; b)$A(Li)< 0.5$ is well below the plateau at $A(Li)=1.1$ found in the Lower Red Giant Branch stars, suggesting Li was originally depleted; and c)the isotopic ratio $^{12}$C/$^{13}$C is 87$\pm6$ showing very low $^{13}$C in contrast to what expected from a spinstar progenitor. We confirm that HE 0107$-$5240 is a binary star with a long period of about 13000d ($\sim36$ years).The carbon isotopic ratio excludes the possibility that the companion has gone through the AGB phase and transferred mass to the currently observed star. The binarity of HE 0107$-$5240 implies some of the first generations of low-mass stars form in multiple systems and indicates that the low metallicity does not preclude the formation of binaries. Finally, a solid indication of $v_{ rad}$ variation has been found also in SMSS 1605$-$1443.

  • Two temperate Earth-mass planets orbiting the nearby star GJ1002

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We report the discovery and characterisation of two Earth-mass planets orbiting in the habitable zone of the nearby M-dwarf GJ~1002 based on the analysis of the radial-velocity (RV) time series from the ESPRESSO and CARMENES spectrographs. The host star is the quiet M5.5~V star GJ~1002 (relatively faint in the optical, $V \sim 13.8$ mag, but brighter in the infrared, $J \sim 8.3$ mag), located at 4.84 pc from the Sun. We analyse 139 spectroscopic observations taken between 2017 and 2021. We performed a joint analysis of the time series of the RV and full-width half maximum (FWHM) of the cross-correlation function (CCF) to model the planetary and stellar signals present in the data, applying Gaussian process regression to deal with the stellar activity. We detect the signal of two planets orbiting GJ~1002. GJ~1002~b is a planet with a minimum mass $m_p \sin i $ of 1.08 $\pm$ 0.13 M$_{\oplus}$ with an orbital period of 10.3465 $\pm$ 0.0027 days at a distance of 0.0457 $\pm$ 0.0013 au from its parent star, receiving an estimated stellar flux of 0.67 $F_{\oplus}$. GJ~1002 c is a planet with a minimum mass $m_p \sin i $ of 1.36 $\pm$ 0.17 M$_{\oplus}$ with an orbital period of 21.202 $\pm$ 0.013 days at a distance of 0.0738 $\pm$ 0.0021 au from its parent star, receiving an estimated stellar flux of 0.257 $F_{\oplus}$. We also detect the rotation signature of the star, with a period of 126 $\pm$ 15 days. GJ~1002 is one of the few known nearby systems with planets that could potentially host habitable environments. The closeness of the host star to the Sun makes the angular sizes of the orbits of both planets ($\sim$ 9.7 mas and $\sim$ 15.7 mas, respectively) large enough for their atmosphere to be studied via high-contrast high-resolution spectroscopy with instruments such as the future spectrograph ANDES for the ELT or the LIFE mission.

  • Planetary system around LTT 1445A unveiled by ESPRESSO: Multiple planets in a triple M-dwarf system

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present radial velocity follow-up obtained with ESPRESSO of the M-type star LTT 1445A (TOI-455), for which a transiting planet b with an orbital period of~5.4 days was detected by TESS. We report the discovery of a second transiting planet (LTT 1445A c) and a third non-transiting candidate planet (LTT 1445A d) with orbital periods of 3.12 and 24.30 days, respectively. The host star is the main component of a triple M-dwarf system at a distance of 6.9 pc. We used 84 ESPRESSO high-resolution spectra to determine accurate masses of 2.3$\pm$0.3 $\mathrm{M}_\oplus$ and 1.0$\pm$0.2 $\mathrm{M}_\oplus$ for planets b and c and a minimum mass of 2.7$\pm$0.7 $\mathrm{M}_\oplus$ for planet d. Based on its radius of 1.43$\pm0.09$ $\mathrm{R}_\oplus$ as derived from the TESS observations, LTT 1445A b has a lower density than the Earth and may therefore hold a sizeable atmosphere, which makes it a prime target for the James Webb Space Telescope. We used a Bayesian inference approach with the nested sampling algorithm and a set of models to test the robustness of the retrieved physical values of the system. There is a probability of 85$\%$ that the transit of planet c is grazing, which results in a retrieved radius with large uncertainties at 1.60$^{+0.67}_{-0.34}$ $\mathrm{R}_\oplus$. LTT 1445A d orbits the inner boundary of the habitable zone of its host star and could be a prime target for the James Webb Space Telescope.