您选择的条件: E. Esparza-Borges
  • Detection of barium in the atmospheres of the ultra-hot gas giants WASP-76b and WASP-121b

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: High-resolution spectroscopy studies of ultra-hot Jupiters have been key in our understanding of exoplanet atmospheres. Observing into the atmospheres of these giant planets allows for direct constraints on their atmospheric compositions and dynamics while laying the groundwork for new research regarding their formation and evolution environments. Two of the most well-studied ultra-hot Jupiters are WASP-76b and WASP-121b, with multiple detected chemical species and strong signatures of their atmospheric dynamics. We take a new look at these two exceptional ultra-hot Jupiters by reanalyzing the transit observations taken with ESPRESSO at the Very Large Telescope and attempt to detect additional species. To extract the planetary spectra of the two targets, we corrected for the telluric absorption and removed the stellar spectrum contributions. We then exploited new synthetic templates that were specifically designed for ultra-hot Jupiters in combination with the cross-correlation technique to unveil species that remained undetected by previous analyses. We add a novel detection of Ba+ to the known atmospheric compositions of WASP-76b and WASP-121b, the heaviest species detected to date in any exoplanetary atmosphere, with additional new detections of Co and Sr+ and a tentative detection of Ti+ for WASP-121b. We also confirm the presence of Ca+, Cr, Fe, H, Li, Mg, Mn, Na, and V on both WASP-76b and WASP-121b, with the addition of Ca, Fe+, and Ni for the latter. Finally, we also confirm the clear asymmetric absorption feature of Ca+ on WASP-121b, with an excess absorption at the bluer wavelengths and an effective planet radius beyond the Roche lobe. This indicates that the signal may arise from the escape of planetary atmosphere.

  • Lower-than-expected flare temperatures for TRAPPIST-1

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Although high energetic radiation from flares is a potential threat to exoplanet atmospheres and may lead to surface sterilization, it might also provide the extra energy for low-mass stars needed to trigger and sustain prebiotic chemistry. We investigate two flares on TRAPPIST-1, an ultra-cool dwarf star that hosts seven exoplanets of which three lie within its habitable zone. The flares are detected in all four passbands of the MuSCAT2 allowing a determination of their temperatures and bolometric energies. We analyzed the light curves of the MuSCAT1 and MuSCAT2 instruments obtained between 2016 and 2021 in $g,r,i,z_\mathrm{s}$-filters. We conducted an automated flare search and visually confirmed possible flare events. We studied the temperature evolution, the global temperature, and the peak temperature of both flares. For the first time we infer effective black body temperatures of flares that occurred on TRAPPIST-1. The black body temperatures for the two TRAPPIST-1 flares derived from the SED are consistent with $T_\mathrm{SED} = 7940_{-390}^{+430}$K and $T_\mathrm{SED} = 6030_{-270}^{+300}$K. The flare black body temperatures at the peak are also calculated from the peak SED yielding $T_\mathrm{SEDp} = 13620_{-1220}^{1520}$K and $T_\mathrm{SEDp} = 8290_{-550}^{+660}$K. We show that for the ultra-cool M-dwarf TRAPPIST-1 the flare black body temperatures associated with the total continuum emission are lower and not consistent with the usually adopted assumption of 9000-10000 K. This could imply different and faster cooling mechanisms. Further multi-color observations are needed to investigate whether or not our observations are a general characteristic of ultra-cool M-dwarfs. This would have significant implications for the habitability of exoplanets around these stars because the UV surface flux is likely to be overestimated by the models with higher flare temperatures.

  • HD 20329b: An ultra-short-period planet around a solar-type star found by TESS

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We used TESS light curves and HARPS-N spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate found around the star HD 20329 (TOI-4524). We performed a joint fit of the light curves and radial velocity time series to measure the mass, radius, and orbital parameters of the candidate. We confirm and characterize HD 20329b, an ultra-short-period (USP) planet transiting a solar-type star. The host star (HD 20329, $V = 8.74$ mag, $J = 7.5$ mag) is characterized by its G5 spectral type with $\mathrm{M}_\star= 0.90 \pm 0.05$ M$_\odot$, $\mathrm{R}_\star = 1.13 \pm 0.02$ R$_\odot$, and $\mathrm{T}_{\mathrm{eff}} = 5596 \pm 50$ K; it is located at a distance $d= 63.68 \pm 0.29$ pc. By jointly fitting the available TESS transit light curves and follow-up radial velocity measurements, we find an orbital period of $0.9261 \pm (0.5\times 10^{-4})$ days, a planetary radius of $1.72 \pm 0.07$ $\mathrm{R}_\oplus$, and a mass of $7.42 \pm 1.09$ $\mathrm{M}_\oplus$, implying a mean density of $\rho_\mathrm{p} = 8.06 \pm 1.53$ g cm$^{-3}$. HD 20329b joins the $\sim$30 currently known USP planets with radius and Doppler mass measurements.