您选择的条件: Pascal Saint-Hilaire
  • Radio Imaging Spectropolarimetry of CMEs and CME Progenitors

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Coronal mass ejections (CMEs) are the most important drivers of space weather. Central to most CMEs is thought to be the eruption of a bundle of highly twisted magnetic field lines known as magnetic flux ropes. A comprehensive understanding of CMEs and their impacts hence requires detailed observations of physical parameters that lead to the formation, destabilization, and eventual eruption of the magnetic flux ropes. Recent advances in remote-sensing observations of coronal cavities, filament channels, sigmoids, EUV "hot channels," white light CMEs, and in situ observations of magnetic clouds points to the possibility of significant progress in understanding CMEs. In this white paper, we provide a brief overview of the potential of radio diagnostics for CMEs and CME progenitors, with a particular focus on the unique means for constraining their magnetic field and energetic electron population. Using synthetic observations based on realistic 3D MHD models, we also demonstrate the transformative potential of advancing such diagnostics by using broadband radio imaging spectropolarimetry with a high image dynamic range and high image fidelity. To achieve this goal, a solar-dedicated radio facility with such capabilities is recommended for implementation in the coming decade.

  • Radio Studies of the Middle Corona: Current State and New Prospects in the Next Decade

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The "middle corona," defined by West et al. (2022) as the region between ~1.5-6 solar radii, is a critical transition region that connects the highly structured lower corona to the outer corona where the magnetic field becomes predominantly radial. At radio wavelengths, remote-sensing of the middle corona falls in the meter-decameter wavelength range where a critical transition of radio emission mechanisms occurs. In addition, plasma properties of the middle corona can be probed by trans-coronal radio propagation methods including radio scintillation and Faraday rotation techniques. Together they offer a wealth of diagnostic tools for the middle corona, complementing current and planned missions at other wavelengths. These diagnostics include unique means for detecting and measuring the magnetic field and energetic electrons associated with coronal mass ejections, mapping coronal shocks and electron beam trajectories, as well as constraining the plasma density, magnetic field, and turbulence of the "young" solar wind. Following a brief overview of pertinent radio diagnostic methods, this white paper will discuss the current state of radio studies on the middle corona, challenges to obtaining a more comprehensive picture, and recommend an outlook in the next decade. Our specific recommendations for advancing the middle coronal sciences from the radio perspective are: (1) Prioritizing solar-dedicated radio facilities in the ~0.1-1 GHz range with broadband, high-dynamic-range imaging spectropolarimetry capabilities. (2) Developing facilities and techniques to perform multi-perspective, multiple lines-of-sight trans-coronal radio Faraday Rotation measurements.

  • Radio Studies of the Middle Corona: Current State and New Prospects in the Next Decade

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The "middle corona," defined by West et al. (2022) as the region between ~1.5-6 solar radii, is a critical transition region that connects the highly structured lower corona to the outer corona where the magnetic field becomes predominantly radial. At radio wavelengths, remote-sensing of the middle corona falls in the meter-decameter wavelength range where a critical transition of radio emission mechanisms occurs. In addition, plasma properties of the middle corona can be probed by trans-coronal radio propagation methods including radio scintillation and Faraday rotation techniques. Together they offer a wealth of diagnostic tools for the middle corona, complementing current and planned missions at other wavelengths. These diagnostics include unique means for detecting and measuring the magnetic field and energetic electrons associated with coronal mass ejections, mapping coronal shocks and electron beam trajectories, as well as constraining the plasma density, magnetic field, and turbulence of the "young" solar wind. Following a brief overview of pertinent radio diagnostic methods, this white paper will discuss the current state of radio studies on the middle corona, challenges to obtaining a more comprehensive picture, and recommend an outlook in the next decade. Our specific recommendations for advancing the middle coronal sciences from the radio perspective are: (1) Prioritizing solar-dedicated radio facilities in the ~0.1-1 GHz range with broadband, high-dynamic-range imaging spectropolarimetry capabilities. (2) Developing facilities and techniques to perform multi-perspective, multiple lines-of-sight trans-coronal radio Faraday Rotation measurements.

  • Quantifying Energy Release in Solar Flares and Solar Eruptive Events: New Frontiers with a Next-Generation Solar Radio Facility

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Solar flares and the often associated solar eruptive events serve as an outstanding laboratory to study the magnetic reconnection and the associated energy release and conversion processes under plasma conditions difficult to reproduce in the laboratory, and with considerable spatiotemporal details not possible elsewhere in the universe. In the past decade, thanks to advances in multi-wavelength imaging spectroscopy, as well as developments in theories and numerical modeling, significant progress has been made in improving our understanding of solar flare/eruption energy release. In particular, broadband imaging spectroscopy at microwave wavelengths offered by the Expanded Owens Valley Solar Array (EOVSA) has enabled the revolutionary capability of measuring the time-evolving coronal magnetic fields at or near the flare reconnection region. However, owing to EOVSA's limited dynamic range, imaging fidelity, and angular resolution, such measurements can only be done in a region around the brightest source(s) where the signal-to-noise is sufficiently large. In this white paper, after a brief introduction to the outstanding questions and challenges pertinent to magnetic energy release in solar flares and eruptions, we will demonstrate how a next-generation radio facility with many (~100-200) antenna elements can bring the next revolution by enabling high dynamic range, high fidelity broadband imaging spectropolarimetry along with a sub-second time resolution and arcsecond-level angular resolution. We recommend to prioritize the implementation of such a ground-based instrument within this decade. We also call for facilitating multi-wavelength, multi-messenger observations and advanced numerical modeling in order to achieve a comprehensive understanding of the "system science" of solar flares and eruptions.

  • Frequency Agile Solar Radiotelescope: A Next-Generation Radio Telescope for Solar Physics and Space Weather

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Frequency Agile Solar Radiotelescope (FASR) has been strongly endorsed as a top community priority by both Astronomy & Astrophysics Decadal Surveys and Solar & Space Physics Decadal Surveys in the past two decades. Although it was developed to a high state of readiness in previous years (it went through a CATE analysis and was declared ``doable now"), the NSF has not had the funding mechanisms in place to fund this mid-scale program. Now it does, and the community must seize this opportunity to modernize the FASR design and build the instrument in this decade. The concept and its science potential have been abundantly proven by the pathfinding Expanded Owens Valley Solar Array (EOVSA), which has demonstrated a small subset of FASR's key capabilities such as dynamically measuring the evolving magnetic field in eruptive flares, the temporal and spatial evolution of the electron energy distribution in flares, and the extensive coupling among dynamic components (flare, flux rope, current sheet). The FASR concept, which is orders of magnitude more powerful than EOVSA, is low-risk and extremely high reward, exploiting a fundamentally new research domain in solar and space weather physics. Utilizing dynamic broadband imaging spectropolarimetry at radio wavelengths, with its unique sensitivity to coronal magnetic fields and to both thermal plasma and nonthermal electrons from large flares to extremely weak transients, the ground-based FASR will make synoptic measurements of the coronal magnetic field and map emissions from the chromosphere to the middle corona in 3D. With its high spatial, spectral, and temporal resolution, as well as its superior imaging fidelity and dynamic range, FASR will be a highly complementary and synergistic component of solar and heliospheric capabilities needed for the next generation of solar science.

  • Quantifying Energy Release in Solar Flares and Solar Eruptive Events: New Frontiers with a Next-Generation Solar Radio Facility

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Solar flares and the often associated solar eruptive events serve as an outstanding laboratory to study the magnetic reconnection and the associated energy release and conversion processes under plasma conditions difficult to reproduce in the laboratory, and with considerable spatiotemporal details not possible elsewhere in the universe. In the past decade, thanks to advances in multi-wavelength imaging spectroscopy, as well as developments in theories and numerical modeling, significant progress has been made in improving our understanding of solar flare/eruption energy release. In particular, broadband imaging spectroscopy at microwave wavelengths offered by the Expanded Owens Valley Solar Array (EOVSA) has enabled the revolutionary capability of measuring the time-evolving coronal magnetic fields at or near the flare reconnection region. However, owing to EOVSA's limited dynamic range, imaging fidelity, and angular resolution, such measurements can only be done in a region around the brightest source(s) where the signal-to-noise is sufficiently large. In this white paper, after a brief introduction to the outstanding questions and challenges pertinent to magnetic energy release in solar flares and eruptions, we will demonstrate how a next-generation radio facility with many (~100-200) antenna elements can bring the next revolution by enabling high dynamic range, high fidelity broadband imaging spectropolarimetry along with a sub-second time resolution and arcsecond-level angular resolution. We recommend to prioritize the implementation of such a ground-based instrument within this decade. We also call for facilitating multi-wavelength, multi-messenger observations and advanced numerical modeling in order to achieve a comprehensive understanding of the "system science" of solar flares and eruptions.

  • Radio Imaging Spectropolarimetry of CMEs and CME Progenitors

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Coronal mass ejections (CMEs) are the most important drivers of space weather. Central to most CMEs is thought to be the eruption of a bundle of highly twisted magnetic field lines known as magnetic flux ropes. A comprehensive understanding of CMEs and their impacts hence requires detailed observations of physical parameters that lead to the formation, destabilization, and eventual eruption of the magnetic flux ropes. Recent advances in remote-sensing observations of coronal cavities, filament channels, sigmoids, EUV "hot channels," white light CMEs, and in situ observations of magnetic clouds points to the possibility of significant progress in understanding CMEs. In this white paper, we provide a brief overview of the potential of radio diagnostics for CMEs and CME progenitors, with a particular focus on the unique means for constraining their magnetic field and energetic electron population. Using synthetic observations based on realistic 3D MHD models, we also demonstrate the transformative potential of advancing such diagnostics by using broadband radio imaging spectropolarimetry with a high image dynamic range and high image fidelity. To achieve this goal, a solar-dedicated radio facility with such capabilities is recommended for implementation in the coming decade.