您选择的条件: James F. Drake
  • Quantifying Energy Release in Solar Flares and Solar Eruptive Events: New Frontiers with a Next-Generation Solar Radio Facility

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Solar flares and the often associated solar eruptive events serve as an outstanding laboratory to study the magnetic reconnection and the associated energy release and conversion processes under plasma conditions difficult to reproduce in the laboratory, and with considerable spatiotemporal details not possible elsewhere in the universe. In the past decade, thanks to advances in multi-wavelength imaging spectroscopy, as well as developments in theories and numerical modeling, significant progress has been made in improving our understanding of solar flare/eruption energy release. In particular, broadband imaging spectroscopy at microwave wavelengths offered by the Expanded Owens Valley Solar Array (EOVSA) has enabled the revolutionary capability of measuring the time-evolving coronal magnetic fields at or near the flare reconnection region. However, owing to EOVSA's limited dynamic range, imaging fidelity, and angular resolution, such measurements can only be done in a region around the brightest source(s) where the signal-to-noise is sufficiently large. In this white paper, after a brief introduction to the outstanding questions and challenges pertinent to magnetic energy release in solar flares and eruptions, we will demonstrate how a next-generation radio facility with many (~100-200) antenna elements can bring the next revolution by enabling high dynamic range, high fidelity broadband imaging spectropolarimetry along with a sub-second time resolution and arcsecond-level angular resolution. We recommend to prioritize the implementation of such a ground-based instrument within this decade. We also call for facilitating multi-wavelength, multi-messenger observations and advanced numerical modeling in order to achieve a comprehensive understanding of the "system science" of solar flares and eruptions.

  • Quantifying Energy Release in Solar Flares and Solar Eruptive Events: New Frontiers with a Next-Generation Solar Radio Facility

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Solar flares and the often associated solar eruptive events serve as an outstanding laboratory to study the magnetic reconnection and the associated energy release and conversion processes under plasma conditions difficult to reproduce in the laboratory, and with considerable spatiotemporal details not possible elsewhere in the universe. In the past decade, thanks to advances in multi-wavelength imaging spectroscopy, as well as developments in theories and numerical modeling, significant progress has been made in improving our understanding of solar flare/eruption energy release. In particular, broadband imaging spectroscopy at microwave wavelengths offered by the Expanded Owens Valley Solar Array (EOVSA) has enabled the revolutionary capability of measuring the time-evolving coronal magnetic fields at or near the flare reconnection region. However, owing to EOVSA's limited dynamic range, imaging fidelity, and angular resolution, such measurements can only be done in a region around the brightest source(s) where the signal-to-noise is sufficiently large. In this white paper, after a brief introduction to the outstanding questions and challenges pertinent to magnetic energy release in solar flares and eruptions, we will demonstrate how a next-generation radio facility with many (~100-200) antenna elements can bring the next revolution by enabling high dynamic range, high fidelity broadband imaging spectropolarimetry along with a sub-second time resolution and arcsecond-level angular resolution. We recommend to prioritize the implementation of such a ground-based instrument within this decade. We also call for facilitating multi-wavelength, multi-messenger observations and advanced numerical modeling in order to achieve a comprehensive understanding of the "system science" of solar flares and eruptions.

  • Frequency Agile Solar Radiotelescope: A Next-Generation Radio Telescope for Solar Physics and Space Weather

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Frequency Agile Solar Radiotelescope (FASR) has been strongly endorsed as a top community priority by both Astronomy & Astrophysics Decadal Surveys and Solar & Space Physics Decadal Surveys in the past two decades. Although it was developed to a high state of readiness in previous years (it went through a CATE analysis and was declared ``doable now"), the NSF has not had the funding mechanisms in place to fund this mid-scale program. Now it does, and the community must seize this opportunity to modernize the FASR design and build the instrument in this decade. The concept and its science potential have been abundantly proven by the pathfinding Expanded Owens Valley Solar Array (EOVSA), which has demonstrated a small subset of FASR's key capabilities such as dynamically measuring the evolving magnetic field in eruptive flares, the temporal and spatial evolution of the electron energy distribution in flares, and the extensive coupling among dynamic components (flare, flux rope, current sheet). The FASR concept, which is orders of magnitude more powerful than EOVSA, is low-risk and extremely high reward, exploiting a fundamentally new research domain in solar and space weather physics. Utilizing dynamic broadband imaging spectropolarimetry at radio wavelengths, with its unique sensitivity to coronal magnetic fields and to both thermal plasma and nonthermal electrons from large flares to extremely weak transients, the ground-based FASR will make synoptic measurements of the coronal magnetic field and map emissions from the chromosphere to the middle corona in 3D. With its high spatial, spectral, and temporal resolution, as well as its superior imaging fidelity and dynamic range, FASR will be a highly complementary and synergistic component of solar and heliospheric capabilities needed for the next generation of solar science.