您选择的条件: Jerry Xuan
  • Broadband vortex fiber nulling: high-dispersion exoplanet science at the diffraction limit

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: As the number of confirmed exoplanets continues to grow, there is an increased push to spectrally characterize them to determine their atmospheric composition, formation paths, rotation rates, and habitability. However, there is a large population of known exoplanets that either do not transit their star or have been detected via the radial velocity (RV) method at very small angular separations such that they are inaccessible to traditional coronagraph systems. Vortex Fiber Nulling (VFN) is a new single-aperture interferometric technique that uses the entire telescope pupil to bridge the gap between traditional coronagraphy and RV or Transit methods by enabling the direct observation and spectral characterization of targets at and within the diffraction limit. By combining a vortex mask with a single mode fiber, the on-axis starlight is rejected while the off-axis planet light is coupled and efficiently routed to a radiometer or spectrograph for analysis. We have demonstrated VFN in the lab monochromatically in the past. In this paper we present a polychromatic validation of VFN with nulls of $<10^{-4}$ across 15% bandwidth light. We also provide an update on deployment plans and predicted yield estimates for the VFN mode of the Keck Planet Imager and Characterizer (KPIC) instrument. Using PSISIM, a simulation package developed in cooperation with several groups, we assess KPIC VFN's ability to detect and characterize different types of targets including planet candidates around promising young-moving-group stars as well as known exoplanets detected via the RV method. The KPIC VFN on-sky demonstration will pave the road to deployment on future instruments such as Keck-HISPEC and TMT-MODHIS where it could provide high-resolution spectra of sub-Jupiter mass planets down to 5 milliarcseconds from their star.

  • Phase II of the Keck Planet Imager and Characterizer: system-level laboratory characterization and preliminary on-sky commissioning

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Keck Planet Imager and Characterizer (KPIC) is a series of upgrades for the Keck II Adaptive Optics (AO) system and the NIRSPEC spectrograph to enable diffraction-limited, high-resolution ($R>30,000$) spectroscopy of exoplanets and low-mass companions in the K and L bands. Phase I consisted of single-mode fiber injection/extraction units (FIU/FEU) used in conjunction with an H-band pyramid wavefront sensor. Phase II, deployed and commissioned in 2022, adds a 1000-actuator deformable mirror, beam-shaping optics, a vortex coronagraph, and other upgrades to the FIU/FEU. The use of single-mode fibers provides a gain in stellar rejection, a substantial reduction in sky background, and an extremely stable line-spread function on the spectrograph. In this paper we present the results of extensive system-level laboratory testing and characterization showing the instrument's Phase II throughput, stability, repeatability, and other key performance metrics prior to delivery and during installation at Keck. We also demonstrate the capabilities of the various observing modes enabled by the new system modules using internal test light sources. Finally, we show preliminary results of on-sky tests performed in the first few months of Phase II commissioning along with the next steps for the instrument. Once commissioning of Phase II is complete, KPIC will continue to characterize exoplanets at an unprecedented spectral resolution, thereby growing its already successful track record of 23 detected exoplanets and brown dwarfs from Phase I. Using the new vortex fiber nulling (VFN) mode, Phase II will also be able to search for exoplanets at small angular separations less than 45 milliarcseconds which conventional coronagraphs cannot reach.