您选择的条件: Ian U. Roederer
  • Uranium Abundances and Ages of $R$-process Enhanced Stars with Novel U II Lines

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The ages of the oldest stars shed light on the birth, chemical enrichment, and chemical evolution of the Universe. Nucleocosmochronometry provides an avenue to determining the ages of these stars independent from stellar evolution models. The uranium abundance, which can be determined for metal-poor $r$-process enhanced (RPE) stars, has been known to constitute one of the most robust chronometers known. So far, U abundance determination has used a $single$ U II line at $\lambda3859$ \r{A}. Consequently, U abundance has been reliably determined for only five RPE stars. Here, we present the first homogeneous U abundance analysis of four RPE stars using two novel U II lines at $\lambda4050$ \r{A} and $\lambda4090$ \r{A}, in addition to the canonical $\lambda3859$ \r{A} line. We find that the U II lines at $\lambda4050$ \r{A} and $\lambda4090$ \r{A} are reliable and render U abundances in agreement with the $\lambda3859$ U abundance, for all the stars. We, thus, determine revised U abundances for RPE stars, 2MASS J09544277+5246414, RAVE J203843.2-002333, HE 1523-0901, and CS 31082-001, using multiple U II lines. We also provide nucleocosmochronometric ages of these stars based on the newly derived U, Th, and Eu abundances. The results of this study open up a new avenue to reliably and homogeneously determine U abundance for a significantly larger number of RPE stars. This will, in turn, enable robust constraints on the nucleocosmochronometric ages of RPE stars, which can be applied to understand the chemical enrichment and evolution in the early Universe, especially of $r$-process elements.

  • Metal Mixing in the R-Process Enhanced Ultra-Faint Dwarf Galaxy Reticulum II

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The ultra-faint dwarf galaxy Reticulum~II was enriched by a single rare and prolific r-process event. The r-process content of Reticulum~II thus provides a unique opportunity to study metal mixing in a relic first galaxy. Using multi-object high-resolution spectroscopy with VLT/GIRAFFE and Magellan/M2FS, we identify 32 clear spectroscopic member stars and measure abundances of Mg, Ca, Fe, and Ba where possible. We find $72^{+10}_{-12}$% of the stars are r-process-enhanced, with a mean $\left\langle\mbox{[Ba/H]}\right\rangle=-1.68~\pm~0.07$ and unresolved intrinsic dispersion $\sigma_{\rm [Ba/H]} < 0.20$. The homogeneous r-process abundances imply that Ret~II's metals are well-mixed by the time the r-enhanced stars form, which simulations have shown requires at least 100 Myr of metal mixing in between bursts of star formation to homogenize. This is the first direct evidence of bursty star formation in an ultra-faint dwarf galaxy. The homogeneous dilution prefers a prompt and high-yield r-process site, such as collapsar disk winds or prompt neutron star mergers. We also find evidence from [Ba/H] and [Mg/Ca] that the r-enhanced stars in Ret~II formed in the absence of substantial pristine gas accretion, perhaps indicating that ${\approx}70$% of Ret~II stars formed after reionization.

  • Dynamical masses and mass-to-light ratios of resolved massive star clusters -- II. Results for 26 star clusters in the Magellanic Clouds

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present spectroscopy of individual stars in 26 Magellanic Cloud (MC) star clusters with the aim of estimating dynamical masses and $V$-band mass-to-light ($M/L_V$) ratios over a wide range in age and metallicity. We obtained 3137 high-resolution stellar spectra with M2FS on the \textit{Magellan}/Clay Telescope. Combined with 239 published spectroscopic results of comparable quality, we produced a final sample of 2787 stars with good quality spectra for kinematic analysis in the target clusters. Line-of-sight velocities measured from these spectra and stellar positions within each cluster were used in a customized expectation-maximization (EM) technique to estimate cluster membership probabilities. Using appropriate cluster structural parameters and corresponding single-mass dynamical models, this technique ultimately provides self-consistent total mass and $M/L_V$ estimates for each cluster. Mean metallicities for the clusters were also obtained and tied to a scale based on calcium IR triplet metallicites. We present trends of the cluster $M/L_V$ values with cluster age, mass and metallicity, and find that our results run about 40 per cent on average lower than the predictions of a set of simple stellar population (SSP) models. Modified SSP models that account for internal and external dynamical effects greatly improve agreement with our results, as can models that adopt a strongly bottom-light IMF. To the extent that dynamical evolution must occur, a modified IMF is not required to match data and models. In contrast, a bottom-heavy IMF is ruled out for our cluster sample as this would lead to higher predicted $M/L_V$ values, significantly increasing the discrepancy with our observations.

  • Probing the He II re-Ionization ERa via Absorbing C IV Historical Yield (HIERACHY) I: A Strong Outflow from a z~4.7 Quasar

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Outflows from super-massive black holes (SMBHs) play an important role in the co-evolution of themselves, their host galaxies, and the larger scale environments. Such outflows are often characterized by emission and absorption lines in various bands and in a wide velocity range blueshifted from the systematic redshift of the host quasar. In this paper, we report a strong broad line region (BLR) outflow from the z~4.7 quasar BR 1202-0725 based on the high-resolution optical spectrum taken with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph installed on the 6.5m Magellan/Clay telescope, obtained from the `Probing the He II re-Ionization ERa via Absorbing C IV Historical Yield' (HIERACHY) project. This rest-frame ultraviolet (UV) spectrum is characterized by a few significantly blueshifted broad emission lines from high ions; the most significant one is the C IV line at a velocity of -6500 km/s relative to the H{\alpha} emission line, which is among the highest velocity BLR outflows in observed quasars at z > 4. The measured properties of UV emission lines from different ions, except for O I and Ly{\alpha}, also follow a clear trend that higher ions tend to be broader and outflow at higher average velocities. There are multiple C IV and Si IV absorbing components identified on the blue wings of the corresponding emission lines, which may be produced by either the outflow or the intervening absorbers.