您选择的条件: Benjamin D. Wandelt
  • Data-driven Cosmology from Three-dimensional Light Cones

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a data-driven technique to analyze multifrequency images from upcoming cosmological surveys mapping large sky area. Using full information from the data at the two-point level, our method can simultaneously constrain the large-scale structure (LSS), the spectra and redshift distribution of emitting sources, and the noise in the observed data without any prior assumptions beyond the homogeneity and isotropy of cosmological perturbations. In particular, the method does not rely on source detection or photometric or spectroscopic redshift estimates. Here, we present the formalism and demonstrate our technique with a mock observation from nine optical and near-infrared photometric bands. Our method can recover the input signal and noise without bias, and quantify the uncertainty on the constraints. Our technique provides a flexible framework to analyze the LSS observation traced by different types of sources, which has potential for wide application to current or future cosmological datasets such as SPHEREx, Rubin Observatory, Euclid, or the Nancy Grace Roman Space Telescope.

  • Simulation-Based Inference of Reionization Parameters From 3D Tomographic 21 cm Lightcone Images

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Tomographic three-dimensional 21 cm images from the epoch of reionization contain a wealth of information about the reionization of the intergalactic medium by astrophysical sources. Conventional power spectrum analysis cannot exploit the full information in the 21 cm data because the 21 cm signal is highly non-Gaussian due to reionization patchiness. We perform a Bayesian inference of the reionization parameters where the likelihood is implicitly defined through forward simulations using density estimation likelihood-free inference (DELFI). We adopt a trained 3D Convolutional Neural Network (CNN) to compress the 3D image data into informative summaries (DELFI-3D CNN). We show that this method recovers accurate posterior distributions for the reionization parameters. Our approach outperforms earlier analysis based on two-dimensional 21 cm images. In contrast, an MCMC analysis of the 3D lightcone-based 21 cm power spectrum alone and using a standard explicit likelihood approximation results in less accurate credible parameter regions than inferred by the DELFI-3D CNN, both in terms of the location and shape of the contours. Our proof-of-concept study implies that the DELFI-3D CNN can effectively exploit more information in the 3D 21 cm images than a 2D CNN or power spectrum analysis. This technique can be readily extended to include realistic effects and is therefore a promising approach for the scientific interpretation of future 21 cm observation data.

  • Implicit Likelihood Inference of Reionization Parameters from the 21 cm Power Spectrum

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The first measurements of the 21 cm brightness temperature power spectrum from the epoch of reionization will very likely be achieved in the near future by radio interferometric array experiments such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA). Standard MCMC analyses use an explicit likelihood approximation to infer the reionization parameters from the 21 cm power spectrum. In this paper, we present a new Bayesian inference of the reionization parameters where the likelihood is implicitly defined through forward simulations using density estimation likelihood-free inference (DELFI). Realistic effects including thermal noise and foreground avoidance are also applied to the mock observations from the HERA and SKA. We demonstrate that this method recovers accurate posterior distributions for the reionization parameters, and outperforms the standard MCMC analysis in terms of the location and size of credible parameter regions. With the minutes-level processing time once the network is trained, this technique is a promising approach for the scientific interpretation of future 21 cm power spectrum observation data. Our code 21cmDELFI-PS is publicly available at this link.

  • Machine learning cosmology from void properties

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Cosmic voids are the largest and most underdense structures in the Universe. Their properties have been shown to encode precious information about the laws and constituents of the Universe. We show that machine learning techniques can unlock the information in void features for cosmological parameter inference. We rely on thousands of void catalogs from the GIGANTES dataset, where every catalog contains an average of 11,000 voids from a volume of $1~(h^{-1}{\rm Gpc})^3$. We focus on three properties of cosmic voids: ellipticity, density contrast, and radius. We train 1) fully connected neural networks on histograms from void properties and 2) deep sets from void catalogs, to perform likelihood-free inference on the value of cosmological parameters. We find that our best models are able to constrain the value of $\Omega_{\rm m}$, $\sigma_8$, and $n_s$ with mean relative errors of $10\%$, $4\%$, and $3\%$, respectively, without using any spatial information from the void catalogs. Our results provide an illustration for the use of machine learning to constrain cosmology with voids.

  • Inflation: Theory and Observations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Cosmic inflation provides a window to the highest energy densities accessible in nature, far beyond those achievable in any realistic terrestrial experiment. Theoretical insights into the inflationary era and its observational probes may therefore shed unique light on the physical laws underlying our universe. This white paper describes our current theoretical understanding of the inflationary era, with a focus on the statistical properties of primordial fluctuations. In particular, we survey observational targets for three important signatures of inflation: primordial gravitational waves, primordial non-Gaussianity and primordial features. With the requisite advancements in analysis techniques, the tremendous increase in the raw sensitivities of upcoming and planned surveys will translate to leaps in our understanding of the inflationary paradigm and could open new frontiers for cosmology and particle physics. The combination of future theoretical and observational developments therefore offer the potential for a dramatic discovery about the nature of cosmic acceleration in the very early universe and physics on the smallest scales.