您选择的条件: Dakotah Tyler
  • The Orbital Architecture of Qatar-6: A Fully Aligned 3-Body System?

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The evolutionary history of an extrasolar system is, in part, fossilized through its planets' orbital orientations relative to the host star's spin axis. However, spin-orbit constraints for warm Jupiters -- particularly in binary star systems, which are amenable to a wide range of dynamical processes -- are relatively scarce. We report a measurement of the Rossiter-McLaughlin effect, observed with the Keck/HIRES spectrograph, across the transit of Qatar-6 A b: a warm Jupiter orbiting one star within a binary system. From this measurement, we obtain a sky-projected spin-orbit angle $\lambda={0.1\pm2.6}^{\circ}$. Combining this new constraint with the stellar rotational velocity of Qatar-6 A that we measure from TESS photometry, we derive a true obliquity $\psi={21.82^{+8.86}_{-18.36}}^{\circ}$ -- consistent with near-exact alignment. We also leverage astrometric data from Gaia DR3 to show that the Qatar-6 binary star system is edge-on ($i_{B}={90.17^{+1.07}_{-1.06}}^{\circ}$), such that the stellar binary and the transiting exoplanet orbit exhibit line-of-sight orbit-orbit alignment. Ultimately, we demonstrate that all current constraints for the 3-body Qatar-6 system are consistent with both spin-orbit and orbit-orbit alignment. High-precision measurements of the projected stellar spin rate of the host star and the sky-plane geometry of the transit relative to the binary plane are required to conclusively verify the full 3D configuration of the system.

  • TOI-1136 is a Young, Coplanar, Aligned Planetary System in a Pristine Resonant Chain

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Convergent disk migration has long been suspected to be responsible for forming planetary systems with a chain of mean-motion resonances (MMR). Dynamical evolution over time could disrupt the delicate resonant configuration. We present TOI-1136, a 700-Myr-old G star hosting at least 6 transiting planets between $\sim$2 and 5 $R_\oplus$. The orbital period ratios deviate from exact commensurability by only $10^{-4}$, smaller than the $\sim$\,$10^{-2}$ deviations seen in typical Kepler near-resonant systems. A transit-timing analysis measured the masses of the planets (3-8$M_\oplus$) and demonstrated that the planets in TOI-1136 are in true resonances with librating resonant angles. Based on a Rossiter-McLaughlin measurement of planet d, the star's rotation appears to be aligned with the planetary orbital planes. The well-aligned planetary system and the lack of detected binary companion together suggest that TOI-1136's resonant chain formed in an isolated, quiescent disk with no stellar fly-by, disk warp, or significant axial asymmetry. With period ratios near 3:2, 2:1, 3:2, 7:5, and 3:2, TOI-1136 is the first known resonant chain involving a second-order MMR (7:5) between two first-order MMR. The formation of the delicate 7:5 resonance places strong constraints on the system's migration history. Short-scale (starting from $\sim$0.1 AU) Type-I migration with an inner disk edge is most consistent with the formation of TOI-1136. A low disk surface density ($\Sigma_{\rm 1AU}\lesssim10^3$g~cm$^{-2}$; lower than the minimum-mass solar nebula) and the resultant slower migration rate likely facilitated the formation of the 7:5 second-order MMR. TOI-1136's deep resonance suggests that it has not undergone much resonant repulsion during its 700-Myr lifetime. One can rule out rapid tidal dissipation within a rocky planet b or obliquity tides within the largest planets d and f.