您选择的条件: Frank C. van den Bosch
  • Evidence of Galaxy Assembly Bias in SDSS DR7 Galaxy Samples from Count Statistics

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present observational constraints on the galaxy-halo connection, focusing particularly on galaxy assembly bias, from a novel combination of counts-in-cylinders statistics, $P(N_{\rm{CIC}})$, with the standard measurements of the projected two-point correlation function, $w_{\rm{p}}(r_{\rm{p}})$, and number density, $n_{\rm{gal}}$, of galaxies. We measure $n_{\rm{gal}}$, $w_{\rm{p}}(r_{\rm{p}})$ and $P(N_{\rm{CIC}})$ for volume-limited, luminosity-threshold samples of galaxies selected from SDSS DR7, and use them to constrain halo occupation distribution (HOD) models, including a model in which galaxy occupation depends upon a secondary halo property, namely halo concentration. We detect significant positive central assembly bias for the $M_r<-20.0$ and $M_r<-19.5$ samples. Central galaxies preferentially reside within haloes of high concentration at fixed mass. Positive central assembly bias is also favoured in the $M_r<-20.5$ and $M_r<-19.0$ samples. We find no evidence of central assembly bias in the $M_r<-21.0$ sample. We observe only a marginal preference for negative satellite assembly bias in the $M_r<-20.0$ and $M_r<-19.0$ samples, and non-zero satellite assembly bias is not indicated in other samples. Our findings underscore the necessity of accounting for galaxy assembly bias when interpreting galaxy survey data, and demonstrate the potential of count statistics in extracting information from the spatial distribution of galaxies, which could be applied to both galaxy-halo connection studies and cosmological analyses.

  • Testing the galaxy collision induced formation scenario for the trail of dark matter deficient galaxies with the susceptibility of globular clusters to the tidal force

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: It has been suggested that a trail of diffuse galaxies, including two dark matter deficient galaxies (DMDGs), in the vicinity of NGC1052 formed because of a high-speed collision between two gas-rich dwarf galaxies, one bound to NGC1052 and the other one on an unbound orbit. The collision compresses the gas reservoirs of the colliding galaxies, which in turn triggers a burst of star formation. In contrast, the dark matter and pre-existing stars in the progenitor galaxies pass through it. Since the high pressures in the compressed gas are conducive to the formation of massive globular clusters (GCs), this scenario can explain the formation of DMDGs with large populations of massive GCs, consistent with the observations of NGC1052-DF2 (DF2) and NGC1052-DF4. A potential difficulty with this `mini bullet cluster' scenario is that the observed spatial distributions of GCs in DMDGs are extended. GCs experience dynamical friction causing their orbits to decay with time. Consequently, their distribution at formation should have been even more extended than that observed at present. Using a semi-analytic model, we show that the observed positions and velocities of the GCs in DF2 imply that they must have formed at a radial distance of 5-10kpc from the center of DF2. However, as we demonstrate, the scenario is difficult to reconcile with the fact that the strong tidal forces from NGC1052 strip the extendedly distributed GCs from DF2, requiring 33-59 massive GCs to form at the collision to explain observations.

  • Constraints on $S_8$ from a full-scale and full-shape analysis of redshift-space clustering and galaxy-galaxy lensing in BOSS

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a novel simulation-based cosmological analysis of galaxy-galaxy lensing and galaxy redshift-space clustering. Compared to analysis methods based on perturbation theory, our simulation-based approach allows us to probe a much wider range of scales, $0.4 \, h^{-1} \, \mathrm{Mpc}$ to $63 \, h^{-1} \, \mathrm{Mpc}$, including highly non-linear scales, and marginalises over astrophysical effects such as assembly bias. We apply this framework to data from the Baryon Oscillation Spectroscopic Survey LOWZ sample cross-correlated with state-of-the-art gravitational lensing catalogues from the Kilo Degree Survey and the Dark Energy Survey. We show that gravitational lensing and redshift-space clustering when analysed over a large range of scales place tight constraints on the growth-of-structure parameter $S_8 = \sigma_8 \sqrt{\Omega_{\rm m} / 0.3}$. Overall, we infer $S_8 = 0.792 \pm 0.022$ when analysing the combination of galaxy-galaxy lensing and projected galaxy clustering and $S_8 = 0.771 \pm 0.027$ for galaxy redshift-space clustering. These findings highlight the potential constraining power of full-scale studies over studies analysing only large scales, and also showcase the benefits of analysing multiple large-scale structure surveys jointly. Our inferred values for $S_8$ fall below the value inferred from the CMB, $S_8 = 0.834 \pm 0.016$. While this difference is not statistically significant by itself, our results mirror other findings in the literature whereby low-redshift large scale structure probes infer lower values for $S_8$ than the CMB, the so-called $S_8$-tension.

  • A candidate runaway supermassive black hole identified by shocks and star formation in its wake

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The interaction of a runaway supermassive black hole (SMBH) with the circumgalactic medium (CGM) can lead to the formation of a wake of shocked gas and young stars behind it. Here we report the serendipitous discovery of an extremely narrow linear feature in HST/ACS images that may be an example of such a wake. The feature extends 62 kpc from the nucleus of a compact star-forming galaxy at z=0.964. Keck LRIS spectra show that the [OIII]/H$\beta$ ratio varies from ~1 to ~10 along the feature, indicating a mixture of star formation and fast shocks. The feature terminates in a bright [OIII] knot with a luminosity of 1.9x10$^{41}$ ergs/s. The stellar continuum colors vary along the feature, and are well-fit by a simple model that has a monotonically increasing age with distance from the tip. The line ratios, colors, and the overall morphology are consistent with an ejected SMBH moving through the CGM at high speed while triggering star formation. The best-fit time since ejection is ~39 Myr and the implied velocity is v~1600 km/s. The feature is not perfectly straight in the HST images, and we show that the amplitude of the observed spatial variations is consistent with the runaway SMBH interpretation. Opposite the primary wake is a fainter and shorter feature, marginally detected in [OIII] and the rest-frame far-ultraviolet. This feature may be shocked gas behind a binary SMBH that was ejected at the same time as the SMBH that produced the primary wake.