您选择的条件: August Evrard
  • A Machine Learning Approach to Enhancing eROSITA Observations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The eROSITA X-ray telescope, launched in 2019, is predicted to observe roughly 100,000 galaxy clusters. Follow-up observations of these clusters from Chandra, for example, will be needed to resolve outstanding questions about galaxy cluster physics. Deep Chandra cluster observations are expensive and follow-up of every eROSITA cluster is infeasible, therefore, objects chosen for follow-up must be chosen with care. To address this, we have developed an algorithm for predicting longer duration, background-free observations based on mock eROSITA observations. We make use of the hydrodynamic cosmological simulation Magneticum, have simulated eROSITA instrument conditions using SIXTE, and have applied a novel convolutional neural network to output a deep Chandra-like "super observation" of each cluster in our simulation sample. Any follow-up merit assessment tool should be designed with a specific use case in mind; our model produces observations that accurately and precisely reproduce the cluster morphology, which is a critical ingredient for determining cluster dynamical state and core type. Our model will advance our understanding of galaxy clusters by improving follow-up selection and demonstrates that image-to-image deep learning algorithms are a viable method for simulating realistic follow-up observations.

  • Incorporating galaxy cluster triaxiality in stacked cluster weak lensing analyses

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Counts of galaxy clusters offer a high-precision probe of cosmology, but control of systematic errors will determine the accuracy of this measurement. Using Buzzard simulations, we quantify one such systematic, the triaxiality distribution of clusters identified with the redMaPPer optical cluster finding algorithm, which was used in the Dark Energy Survey Year-1 (DES Y1) cluster cosmology analysis. We test whether redMaPPer selection biases the clusters' shape and orientation and find that it only biases orientation, preferentially selecting clusters with their major axes oriented along the line of sight. Modeling the richness-mass relation as a log-linear relation, we find that the log-richness amplitude $\ln(A)$ is boosted from the lowest to highest orientation bin with a significance of $14\sigma$, while the orientation dependence of the richness-mass slope and intrinsic scatter is minimal. We also find that the weak lensing shear-profile ratios of cluster-associated dark halos in different orientation bins resemble a "bottleneck" shape that can be quantified with a Cauchy function. We test the correlation of orientation with two other leading systematics in cluster cosmology -- miscentering and projection -- and find a null correlation. Analytic templates for the triaxiality bias of observed-richness and lensing profiles are mapped as corrections to the observable of richness-binned lensing profiles for redMaPPer clusters. The resulting mass bias confirms the DES Y1 finding that triaxiality is a leading source of bias in cluster cosmology. However, the richness-dependence of the bias confirms that triaxiality does not fully resolve the tension at low-richness between DES Y1 cluster cosmology and other probes. Our model can be used for quantifying the impact of triaxiality bias on cosmological constraints for upcoming weak lensing surveys of galaxy clusters.