按提交时间
按主题分类
按作者
按机构
您选择的条件: Angelle Tanner
  • Characterizing and Mitigating the Impact of Telluric Absorption in Precise Radial Velocities

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Precise radial velocity (PRV) surveys are important for the search of Earth analogs around nearby bright stars. Such planets induce a small stellar reflex motion with RV amplitude of $\sim$10 cm/s. Detecting such a small RV signal poses important challenges to instrumentation, data analysis, and the precision of astrophysical models to mitigate stellar jitter. In this work, we investigate an important component in the PRV error budget - the spectral contamination from the Earth's atmosphere (tellurics). We characterize the effects of telluric absorption on the RV precision and quantify its contribution to the RV budget over time and across a wavelength range of 350 nm - 2.5$\mu$m. We investigate the effectiveness in mitigating tellurics using simulated spectra of a solar twin star with telluric contamination over a year's worth of observations, and we extracted the RVs using two commonly adopted algorithms: dividing out a telluric model before performing cross-correlation or Forward Modeling the observed spectrum incorporating a telluric model. We assume various degrees of cleanness in removing the tellurics, including mimicking the lack of accurate knowledge of the telluric lines by using a mismatched line profile to model the "observed" tellurics. We conclude that the RV errors caused by telluric absorption can be suppressed to close to or even below the photon-limited precision in the optical region, especially in the blue, around 1-10 cm/s. At red through near-infrared wavelengths, however, the residuals of tellurics can induce an RV error on the m/s level even under the most favorable assumptions for telluric removal, leading to significant systematic noise in the RV time series and periodograms. If the red-optical or near-infrared becomes critical in the mitigation of stellar activity, systematic errors from tellurics can be eliminated with a space mission such as EarthFinder.

  • TOI 560 : Two Transiting Planets Orbiting a K Dwarf Validated with iSHELL, PFS and HIRES RVs

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We validate the presence of a two-planet system orbiting the 0.15--1.4 Gyr K4 dwarf TOI 560 (HD 73583). The system consists of an inner moderately eccentric transiting mini-Neptune (TOI 560 b, $P = 6.3980661^{+0.0000095}_{-0.0000097}$ days, $e=0.294^{+0.13}_{-0.062}$, $M= 0.94^{+0.31}_{-0.23}M_{Nep}$) initially discovered in the Sector 8 \tess\ mission observations, and a transiting mini-Neptune (TOI 560 c, $P = 18.8805^{+0.0024}_{-0.0011}$ days, $M= 1.32^{+0.29}_{-0.32}M_{Nep}$) discovered in the Sector 34 observations, in a rare near-1:3 orbital resonance. We utilize photometric data from \tess\, \textit{Spitzer}, and ground-based follow-up observations to confirm the ephemerides and period of the transiting planets, vet false positive scenarios, and detect the photo-eccentric effect for TOI 560 b. We obtain follow-up spectroscopy and corresponding precise radial velocities (RVs) with the iSHELL spectrograph at the NASA Infrared Telescope Facility and the HIRES Spectrograph at Keck Observatory to validate the planetary nature of these signals, which we combine with published PFS RVs from Magellan Observatory. We detect the masses of both planets at $> 3-\sigma$ significance. We apply a Gaussian process (GP) model to the \tess\ light curves to place priors on a chromatic radial velocity GP model to constrain the stellar activity of the TOI 560 host star, and confirm a strong wavelength dependence for the stellar activity demonstrating the ability of NIR RVs in mitigating stellar activity for young K dwarfs. TOI 560 is a nearby moderately young multi-planet system with two planets suitable for atmospheric characterization with James Webb Space Telescope (JWST) and other upcoming missions. In particular, it will undergo six transit pairs separated by $<$6 hours before June 2027.

  • Validating AU Microscopii d with Transit Timing Variations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: AU Mic is a young (22 Myr) nearby exoplanetary system that exhibits excess TTVs that cannot be accounted for by the two known transiting planets nor stellar activity. In this work, we present the validation of the candidate planet AU Mic d. We add 18 new transits and nine midpoint times in an updated TTV analysis to prior work. We perform the joint modeling of transit light curves using EXOFASTv2 and extract the transit midpoint times. Next, we construct an O-C diagram and use Exo-Striker to model the TTVs. We generate TTV log-likelihood periodograms to explore possible solutions for the period of planet d and then follow those up with detailed TTV and RV MCMC modeling and stability tests. We find several candidate periods for AU Mic d, all of which are near resonances with AU Mic b and c of varying order. Based on our model comparisons, the most-favored orbital period of AU Mic d is 12.73812+/-0.00128 days (T_{C,d}=2458333.32110+/-0.35836 BJD), which puts the three planets near a 4:6:9 mean-motion orbital resonance. The mass for d is M_d=1.013+/-0.146 M_E, making this planet Earth-like in mass. The presence of orbital resonances in a very young system implies that compact planetary systems can develop resonant chains very early on, which can quickly establish the stability of the systems. Additional TTV observation of the AU Mic system are needed to further constrain the planetary masses, search for possible transits of AU Mic d, and detect possible additional planets beyond AU Mic c.