您选择的条件: Heran Xiong
  • Evolution of the post merger remnants from the coalescence of oxygen-neon and carbon-oxygen white dwarf pairs

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Although multidimensional simulations have investigated the processes of double WD mergers, post-merger evolution only focused on the carbon-oxygen (CO) WD or helium (He) WD merger remnants. In this work, we investigate for the first time the evolution of the remnants stemmed from the merger of oxygen-neon (ONe) WDs with CO WDs. Our simulation results indicate that the merger remnants can evolve to hydrogen- and helium-deficient giants with maximum radius of about 300Rsun. Our models show evidence that merger remnants more massive than 1.95Msun can ignite Ne before significant mass-loss ensues, and they thus would become electron-capture supernovae (ECSNe). However, remnants with initial masses less than 1.90Msun will experience further core contraction and longer evolutionary time before reaching at the conditions for Ne-burning. Therefore their fates are more dependent on mass-loss rates due to stellar winds, and thus more uncertain. Relatively high mass-loss rates would cause such remnants to end their lives as ONe WDs. Our evolutionary models can naturally explain the observational properties of the double WD merger remnant IRAS 00500+6713 (J005311). As previously suggested in the literature, we propose and justify that J005311 may be the remnant from the coalescence of an ONe WD and an CO WD. We deduce that the final outcome of J005311 would be a massive ONe WD rather than a supernova explosion. Our investigations may be able to provide possible constraints on the wind mass-loss properties of the giants which have CO-dominant envelopes.

  • Formation of ultra-massive carbon-oxygen white dwarfs from the merger of carbon-oxygen and helium white dwarf pairs

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Ultra-massive white dwarfs (UMWDs) with masses larger than 1.05Msun are basically believed to harbour oxygen-neon (ONe) cores. Recently, Gaia data reveals an enhancement of UMWDs on Hertzsprung-Russell diagram (HRD), which indicates that extra cooling delay mechanism such as crystallization and elemental sedimentation may exist in the UMWDs. Further studies suggested that a portion of UMWDs should have experienced pretty long cooling delays, implying that they are carbon-oxygen (CO) WDs. However, the formation mechanism of these UMCOWDs is still under debate. In this work, we investigated whether the merges of massive CO WDs with helium WDs (He WDs) can evolve to UMCOWDs. By employing stellar evolution code MESA, we construct double WD merger remnants to investigate their final fates. We found that the post-merger evolution of the remnants are similar to R CrB stars. The helium burning of the He shell leads to the mass growing of the CO core at a rate from 2.0*10^-6 to 5.0*10^-6 Msun/yr . The final CO WD mass is influenced by the wind-mass-loss rate during the post-merger evolution, and cannot exceed about 1.2Msun. The remnants with core mass larger than 1.2Msun will experience surface carbon ignition, which may finally end their lives as ONe WDs. Current results implies that at least a portion of UMWDs which experience extra long cooling delay may stem from merging of CO WDs and He WDs.

  • WD mass and orbital period relation of sdB + He WD binaries

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Most subdwarf B (sdB) + Helium white dwarf (He WD) binaries are believed to be formed from a particular channel. In this channel, the He WDs are produced first from red giants (RGs) with degenerate cores via stable mass transfer and sdB stars are produced from RGs with degenerate cores via common envelope (CE) ejection. They are important for the studies of CE evolution, binary evolution, and binary population synthesis. However, the relation between WD mass and orbital period of sdB + He WD binaries has not been specifically studied. In this paper, we first use a semi-analytic method to follow their formation and find a WD mass and orbital period relation. Then we use a detailed stellar evolution code to model their formation from main-sequence binaries. We find a similar relation between the WD mass and orbital period, which is in broad agreement with observations. For most sdB + He WD systems, if the WD mass (orbital period) can be determined, the orbital period (WD mass) can be inferred with this relation and then the inclination angle can be constrained with the binary mass function. In addition, we can also use this relation to constrain the CE ejection efficiency and find that a relative large CE ejection efficiency is favoured. If both the WD and sdB star masses can be determined, the critical mass ratios of dynamically unstable mass transfer for RG binaries can also be constrained.

  • The Binarity of Early-type Stars from LAMOST Medium-resolution Spectroscopic Survey

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Massive binaries play significant roles in many fields. Identification of massive stars, particularly massive binaries, is of great importance. In this paper, by adopting the technique of measuring the equivalent widths of several spectral lines, we identified 9,382 early-type stars from LAMOST medium-resolution survey and divided the sample into four groups, T1 ($\sim$O-B4), T2 ($\sim$B5), T3 ($\sim$B7), and T4 ($\sim$B8-A). The relative radial velocities $RV_{\rm rel}$ were calculated using the Maximum Likelihood Estimation. The stars with significant changes of $RV_{\rm rel}$ and at least larger than 15.57km s$^{-1}$ were identified as spectroscopic binaries. We found that the observed spectroscopic binary fractions for the four groups are $24.6\%\pm0.5\%$, $20.8\%\pm0.6\%$, $13.7\%\pm0.3\%$, and $7.4\%\pm0.3\%$, respectively. Assuming that orbital period ($P$) and mass ratio ($q$) have intrinsic distributions as $f(P) \propto P^\pi$ (1\textless$P$\textless1000 days) and $f(q) \propto q^\kappa$ (0.1\textless$q$\textless1), respectively, we conducted a series of Monte-Carlo simulations to correct observational biases for estimating the intrinsic multiplicity properties. The results show that the intrinsic binary fractions for the four groups are 68$\%\pm8\%$, 52$\%\pm3\%$, 44$\%\pm6\%$, and 44$\%\pm6\%$, respectively. The best estimated values for $\pi$ are -1$\pm0.1$, -1.1$\pm0.05$, -1.1$\pm0.1$, and -0.6$\pm0.05$, respectively. The $\kappa$ cannot be constrained for groups T1 and T2 and is -2.4$\pm0.3$ for group T3 and -1.6$\pm0.3$ for group T4. We confirmed the relationship of a decreasing trend in binary fractions towards late-type stars. No correlation between the spectral type and the orbital period distribution has been found yet, possibly due to the limitation of observational cadence.

  • Evolution of the post merger remnants from the coalescence of oxygen-neon and carbon-oxygen white dwarf pairs

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Although multidimensional simulations have investigated the processes of double WD mergers, post-merger evolution only focused on the carbon-oxygen (CO) WD or helium (He) WD merger remnants. In this work, we investigate for the first time the evolution of the remnants stemmed from the merger of oxygen-neon (ONe) WDs with CO WDs. Our simulation results indicate that the merger remnants can evolve to hydrogen- and helium-deficient giants with maximum radius of about 300Rsun. Our models show evidence that merger remnants more massive than 1.95Msun can ignite Ne before significant mass-loss ensues, and they thus would become electron-capture supernovae (ECSNe). However, remnants with initial masses less than 1.90Msun will experience further core contraction and longer evolutionary time before reaching at the conditions for Ne-burning. Therefore their fates are more dependent on mass-loss rates due to stellar winds, and thus more uncertain. Relatively high mass-loss rates would cause such remnants to end their lives as ONe WDs. Our evolutionary models can naturally explain the observational properties of the double WD merger remnant IRAS 00500+6713 (J005311). As previously suggested in the literature, we propose and justify that J005311 may be the remnant from the coalescence of an ONe WD and an CO WD. We deduce that the final outcome of J005311 would be a massive ONe WD rather than a supernova explosion. Our investigations may be able to provide possible constraints on the wind mass-loss properties of the giants which have CO-dominant envelopes.