您选择的条件: Yi-Xian Chen
  • Wide Dust Gaps in Protoplanetary Disks Induced by Eccentric Planets: A Mass-Eccentricity Degeneracy

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The tidal perturbation of embedded protoplanets on their natal disks has been widely attributed to be the cause of gap-ring structures in sub-mm images of protoplanetary disks around T Tauri stars. Numerical simulations of this process have been used to propose scalings of characteristic dust gap width/gap-ring distance with respect to planet mass. Applying such scalings to analyze observed gap samples yields a continuous mass distribution for a rich population of hypothetical planets in the range of several Earth to Jupiter masses. In contrast, the conventional core-accretion scenario of planet formation predicts a bi-modal mass function due to 1) the onset of runaway gas accretion above \sim20 Earth masses and 2) suppression of accretion induced by gap opening. Here we examine the dust disk response to the tidal perturbation of eccentric planets as a possible resolution of this paradox. Based on simulated gas and dust distributions, we show the gap-ring separation of Neptune-mass planets with small eccentricities might become comparable to that induced by Saturn-mass planets on circular orbits. This degeneracy may obliterate the discrepancy between the theoretical bi-modal mass distribution and the observed continuous gap width distribution. Despite damping due to planet-disk interaction, modest eccentricity may be sustained either in the outer regions of relatively thick disks or through resonant excitation among multiple super Earths. Moreover, the ring-like dust distribution induced by planets with small eccentricities is axisymmetric even in low viscosity environments, consistent with the paucity of vortices in ALMA images.

  • Spin Evolution of Stellar-mass Black Holes Embedded in AGN disks: Orbital Eccentricity Produces Retrograde Circumstellar Flows

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Spin evolution of stellar-mass Black Holes (sBHs) embedded in AGN accretion disks is an important process relevant to production of gravitaional waves from binary Black Hole (BBH) merger events through the AGN channel. Since embedded sBHs are surrounded by circum-stellar disks (CSDs), the rotation of CSD gas flows determine the direction of the angular momentum it accretes. In this Letter, we use global 2D hydrodynamic simulations to show that while a disk-embedded sBH on a circular orbit transforms the initial retrograde Keplerian shear of the background accretion disk into a prograde CSD flow, as in the classical picture of companion-disk interaction theory, moderate orbital eccentricity could disrupt the steady-state tidal perturbation and preserve a retrograde CSD flow around the sBH. This switch of CSD orientation occurs at a transition eccentricity that scales nearly proportional with local sound speed. This bifurcation in the CSD flow and thereafter spin-up direction of SBHs leads to formation of a population of nearly anti-aligned sBHs and should be incorporated in future population models of sBH and BBH evolutions.

  • Prograde and Retrograde Gas Flow around Disk-embedded Companions: Dependence on Eccentricity, Mass and Disk Properties

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We apply 3D hydrodynamical simulations to study the rotational aspect of gas flow patterns around eccentric companions embedded in an accretion disk around its primary host. We sample a wide range of companion mass ratio q and disk aspect ratio h, and confirm a generic transition from prograde (steady tidal interaction dominated) to retrograde (background Keplerian shear dominated) circum-companion flow when orbital eccentricity exceeds a critical value et. We find et \sim h for sub-thermal companions while et \sim (q/h)^1/3 for super-thermal companions, and propose an empirical formula to unify the two scenarios. Our results also suggest that et is insensitive to modest levels of turbulence, modeled in the form of a kinematic viscosity term. In the context of stellar-mass Black Holes (sBHs) embedded in AGN accretion disks, the bifurcation of their circum-stellar disk (CSD) rotation suggest the formation of a population of nearly anti-aligned sBHs, whose relevance to low spin gravitational waves (GW) events can be probed in more details with future population models of sBH evolution in AGN disks, making use of our quantitative scaling for et; In the context of circum-planetary disks (CPDs), our results suggest the possibility of forming retrograde satellites in-situ in retrograde CPDs around eccentric planets.

  • Turbulent Transport of Dust Particles in Protostellar Disks: The Effect of Upstream Diffusion

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We study the long-term radial transport of micron to mm-size grain in protostellar disks (PSDs) based on diffusion and viscosity coefficients measured from 3D global stratified-disk simulations with a Lagrangian hydrodynamic method. While gas-drag tend to transport dust species radially inwards, stochastic diffusion can spread a considerable fraction of dust radially outwards (upstream) depending on the nature of turbulence. In gravitationally unstable disks, we measure a high radial diffusion coefficient Dr with little dependence on altitude. This leads to strong and vertically homogeneous upstream diffusion in early PSDs. In the solar nebula, the robust upstream diffusion of micron to mm size grains not only efficiently transports highly refractory mocron-size grains (such as those identified in the samples of comet 81P/Wild 2) from their regions of formation inside the snow line out to the Kuiper Belt, but can also spread mm-size CAI formed in the stellar proximity to distances where they can be assimilated into chondritic meteorites. In disks dominated by magnetorotational instability (MRI), the upstream diffusion effect is generally milder, with a separating feature due to diffusion being stronger in the surface layer than the midplane. This variation becomes much more pronounced if we additionally consider a quiescent midplane with lower turbulence and larger characteristic dust size due to non-ideal MHD effects. This segregation scenario helps to account for dichotomy of two dust populations' spatial distribution as observed in scattered light and ALMA images.

  • 3D Radiation Hydrodynamic Simulations of Gravitational Instability in AGN Accretion Disks: Effects of Radiation Pressure

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We perform 3D radiation hydrodynamic local shearing box simulations to study the outcome of gravitational instability (GI) in optically thick Active Galactic Nuclei (AGN) accretion disks. GI develops when the Toomre parameter QT \leq 1, and may lead to turbulent heating that balances radiative cooling. However, when radiative cooling is too efficient, the disk may undergo runaway gravitational fragmentation. In the fully gas-pressure-dominated case, we confirm the classical result that such a thermal balance holds when the Shakura-Sunyaev viscosity parameter (alpha) due to the gravitationally-driven turbulence is \sim 0.2, corresponding to dimensionless cooling times Omega tcool \sim 5. As the fraction of support by radiation pressure increases, the disk becomes more prone to fragmentation, with a reduced (increased) critical value of alpha (omega tcool). The effect is already significant when the radiation pressure exceeds 10% of the gas pressure, while fully radiation-pressure-dominated disks fragment at Omega tcool <50 . The latter translates to a maximum turbulence level alpha<0.02, comparable to that generated by Magnetorotational Instability (MRI). Our results suggest that gravitationally unstable (QT \sim 1) outer regions of AGN disks with significant radiation pressure (likely for high/near- Eddington accretion rates) should always fragment into stars, and perhaps black holes.