您选择的条件: Jeong-Gyu Kim
  • Physical Modeling of Dust Polarization from Magnetically Enhanced Radiative Torque (MRAT) Alignment in Protostellar Cores with POLARIS

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Magnetic fields ($\textbf{B}$) are an important factor that controls the star formation process. The leading method to observe $\textbf{B}$ is using polarized thermal emission from dust grains aligned with $\textbf{B}$. However, in dense environments such as protostellar cores, dust grains may have inefficient alignment due to strong gas randomizations, so that using dust polarization to trace $\textbf{B}$ is uncertain. Hoang $\&$ Lazarian (2016) demonstrated that the grain alignment by RAdiative Torques is enhanced if dust grains contain embedded iron inclusions. Here we extend POLARIS code to study the effect of iron inclusions on grain alignment and thermal dust polarization toward a protostellar core, assuming uniform magnetic fields. We found that paramagnetic grains produce a low polarization degree of $p \sim 1\%$ in the envelope and negligible $p \ll 1\%$ in the central region due to the loss of grain alignment. In contrast, grains with a high level of iron inclusions can have perfect alignment and produce high $p \sim 40\%$ in the envelope and low $p \leq 10\%$ in the central region. Grains with a moderate level of iron inclusions induce the polarization flipping from $\textbf{P}$ $\parallel$ $\textbf{B}$ at millimeter to $\textbf{P}$ $\perp$ $\textbf{B}$ at submillimeter due to the change in the internal alignment caused by slow internal relaxation. The weak alignment of very large grains of $a \geq 10\mu m$ reduces the polarization by dichroic extinction at submillimeter wavelengths. We found a positive correlation between p and the level of iron inclusions, which opens a new window to constrain the abundance of irons locked in dust through dust polarimetry.

  • Introducing TIGRESS-NCR: I. Co-Regulation of the Multiphase Interstellar Medium and Star Formation Rates

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Massive, young stars are the main source of energy that maintains multiphase structure and turbulence in the interstellar medium (ISM), and without this "feedback" the star formation rate (SFR) would be much higher than is observed. Rapid energy loss in the ISM and efficient energy recovery by stellar feedback lead to co-regulation of SFRs and the ISM state. Realistic approaches to this problem should solve the dynamical evolution of the ISM, including star formation, and the input of feedback energy self-consistently and accurately. Here, we present the TIGRESS-NCR numerical framework, in which UV radiation, supernovae, cooling and heating processes, and gravitational collapse are modeled explicitly. We use an adaptive ray tracing method for UV radiation transfer from star clusters represented by sink particles, accounting for attenuation by dust and gas. We solve photon-driven chemical equations to determine the abundances of H (time-dependent) and C/O-bearing species (steady-state), which then set cooling and heating rates self-consistently. Applying these methods, we present high-resolution magnetohydrodynamics simulations of differentially rotating local galactic disks representing typical conditions of nearby star-forming galaxies. We analyze ISM properties and phase distributions and show good agreement with existing multiwavelength galactic observations. We measure midplane pressure components (turbulent, thermal, and magnetic) and the weight, demonstrating that vertical dynamical equilibrium holds. We quantify the ratios of pressure components to the SFR surface density, which we call the feedback yields. The TIGRESS-NCR framework will allow for a wide range of parameter exploration, including low metallicity system.

  • Photochemistry and Heating/Cooling of the Multiphase Interstellar Medium with UV Radiative Transfer for Magnetohydrodynamic Simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present an efficient heating/cooling method coupled with chemistry and ultraviolet (UV) radiative transfer, which can be applied to numerical simulations of the interstellar medium (ISM). We follow the time-dependent evolution of hydrogen species (H$_2$, H, H$^+$), assume carbon/oxygen species (C, C$^+$, CO, O, and O$^+$) are in formation-destruction balance given the non-steady hydrogen abundances, and include essential heating/cooling processes needed to capture thermodynamics of all ISM phases. UV radiation from discrete point sources and the diffuse background is followed through adaptive ray tracing and a six-ray approximation, respectively, allowing for H$_2$ self-shielding; cosmic ray (CR) heating and ionization are also included. To validate our methods and demonstrate their application for a range of density, metallicity, and radiation field, we conduct a series of tests, including the equilibrium curves of thermal pressure vs. density, the chemical and thermal structure in photo-dissociation regions, H I-to-H$_2$ transitions, and the expansion of H II regions and radiative supernova remnants. Careful treatment of photochemistry and CR ionization is essential for many aspects of ISM physics, including identifying the thermal pressure at which cold and warm neutral phases co-exist. We caution that many current heating and cooling treatments used in galaxy formation simulations do not reproduce the correct thermal pressure and ionization fraction in the neutral ISM. Our new model is implemented in the MHD code Athena and incorporated in the TIGRESS simulation framework, for use in studying the star-forming ISM in a wide range of environments.