您选择的条件: Tianshu Wang
  • Graph Neural Network-based Resource Allocation Strategies for Multi-Object Spectroscopy

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Resource allocation problems are often approached with linear programming techniques. But many concrete allocation problems in the experimental and observational sciences cannot or should not be expressed in the form of linear objective functions. Even if the objective is linear, its parameters may not be known beforehand because they depend on the results of the experiment for which the allocation is to be determined. To address these challenges, we present a bipartite Graph Neural Network architecture for trainable resource allocation strategies. Items of value and constraints form the two sets of graph nodes, which are connected by edges corresponding to possible allocations. The GNN is trained on simulations or past problem occurrences to maximize any user-supplied, scientifically motivated objective function, augmented by an infeasibility penalty. The amount of feasibility violation can be tuned in relation to any available slack in the system. We apply this method to optimize the astronomical target selection strategy for the highly multiplexed Subaru Prime Focus Spectrograph instrument, where it shows superior results to direct gradient descent optimization and extends the capabilities of the currently employed solver which uses linear objective functions. The development of this method enables fast adjustment and deployment of allocation strategies, statistical analyses of allocation patterns, and fully differentiable, science-driven solutions for resource allocation problems.

  • Effects of Different Closure Choices in Core-Collapse Supernova Simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The two-moment method is widely used to approximate the full neutrino transport equation in core-collapse supernova (CCSN) simulations, and different closures lead to subtle differences in the simulation results. In this paper, we compare the effects of closure choices on various physical quantities in 1D and 2D time-dependent CCSN simulations with our multi-group radiation hydrodynamics code Fornax. We find that choices of the 3rd-order closure relations influence the time-dependent simulations only slightly. Choices of the 2nd-order closure relation have larger consequences than choices of the 3rd-order closure do, but these are still small compared to the remaining variations due to ambiguities in some physical inputs such as the nuclear equation of state. We also find that deviations in Eddington factors are not monotonically related to deviations in physical quantities, which means that simply comparing the Eddington factors does not inform one concerning which closure is better.

  • The Essential Character of the Neutrino Mechanism of Core-Collapse Supernova Explosions

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Calibrating with detailed 2D core-collapse supernova simulations, we derive a simple core-collapse supernova explosion condition based solely upon the terminal density profiles of state-of-the-art stellar evolution calculations of the progenitor massive stars. This condition captures the vast majority of the behavior of the one hundred 2D state-of-the-art models we performed to gauge its usefulness. The goal is to predict, without resort to detailed simulation, the explodability of a given massive star. We find that the simple maximum fractional ram pressure jump discriminant we define works well ~90% of the time and we speculate on the origin of the few false positives and false negatives we witness. The maximum ram pressure jump generally occurs at the time of accretion of the silicon/oxygen interface, but not always. Our results depend upon the fidelity with which the current implementation of our code Fornax adheres to Nature and issues concerning the neutrino-matter interaction, the nuclear equation of state, the possible effects of neutrino oscillations, grid resolution, the possible role of rotation and magnetic fields, and the accuracy of the numerical algorithms employed remain to be resolved. Nevertheless, the explodability condition we obtain is simple to implement, shows promise that it might be further generalized while still employing data from only the unstable Chandrasekhar progenitors, and is a more credible and robust simple explosion predictor than can currently be found in the literature.

  • Systematic KMTNet Planetary Anomaly Search, Paper I: OGLE-2019-BLG-1053Lb, A Buried Terrestrial Planet

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In order to exhume the buried signatures of "missing planetary caustics" in the KMTNet data, we conducted a systematic anomaly search to the residuals from point-source point-lens fits, based on a modified version of the KMTNet EventFinder algorithm. This search reveals the lowest mass-ratio planetary caustic to date in the microlensing event OGLE-2019-BLG-1053, for which the planetary signal had not been noticed before. The planetary system has a planet-host mass ratio of $q = (1.25 \pm 0.13) \times 10^{-5}$. A Bayesian analysis yields estimates of the mass of the host star, $M_{\rm host} = 0.61_{-0.24}^{+0.29}~M_\odot$, the mass of its planet, $M_{\rm planet} = 2.48_{-0.98}^{+1.19}~M_{\oplus}$, the projected planet-host separation, $a_\perp = 3.4_{-0.5}^{+0.5}$ au, and the lens distance of $D_{\rm L} = 6.8_{-0.9}^{+0.6}$ kpc. The discovery of this very low mass-ratio planet illustrates the utility of our method and opens a new window for a large and homogeneous sample to study the microlensing planet-host mass-ratio function down to $q \sim 10^{-5}$.

  • The Gravitational-Wave Signature of Core-Collapse Supernovae

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We calculate the gravitational-wave (GW) signatures of detailed 3D core-collapse supernova simulations spanning a range of massive stars. Most of the simulations are carried out to times late enough to capture more than 95% of the total GW emission. We find that the f/g-mode and f-mode of proto-neutron star oscillations carry away most of the GW power. The f-mode frequency inexorably rises as the proto-neutron star (PNS) core shrinks. We demonstrate that the GW emission is excited mostly by accretion plumes onto the PNS that energize modal oscillations and also high-frequency (``haze") emission correlated with the phase of violent accretion. The duration of the major phase of emission varies with exploding progenitor and there is a strong correlation between the total GW energy radiated and the compactness of the progenitor. Moreover, the total GW emissions vary by as much as three orders of magnitude from star to star. For black-hole formation, the GW signal tapers off slowly and does not manifest the haze seen for the exploding models. For such failed models, we also witness the emergence of a spiral shock motion that modulates the GW emission at a frequency near $\sim$100 Hertz that slowly increases as the stalled shock sinks. We find significant angular anisotropy of both the high- and low-frequency (memory) GW emissions, though the latter have very little power.