您选择的条件: Luis A. Zapata
  • W51North: A protocluster emerging out of a thermally inhibited fragmenting cloud

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The fragmentation process in massive star-forming regions is one of the contemporary problems in astrophysics, and several physical processes have been proposed to control the fragmentation including turbulence, magnetic field, rotation, stellar feedback, and gravity. However, the fragmentation process has been poorly studied at small spatial scales well below 1000 AU. We aim to use ALMA (Atacama Large Millimeter and Submillimeter Array) high angular resolution data to identify the fragments in W51 IRS2 and to study the fragmentation properties on a spatial scale of 200 AU. We used ALMA data of W51 IRS2 from three projects, which give an angular resolution of 0.028$^{\prime\prime}$ (144 AU) at millimeter wavelengths. We identified compact fragments by using {\it uv}-range constrained 1.3 mm continuum data. A Mean Surface Density of Companions (MSDC) analysis has been performed to study the separations between fragments. A total number of 33 continuum sources are identified and 29 out of them are defined as fragments in the surveyed region.The MSDC analysis reveals two breaks corresponding to spatial sales of 1845 AU and 7346 AU, indicative of a two-level clustering phenomenon, along with a linear regime below 1845 AU, mostly associated with W51 North, whose slope is consistent with the slope for the clustering regime of other cluster-like regions in the Galaxy. The typical masses and separations of the fragments as well as the relation between density and number of fragments can be explained through a thermal Jeans process operating at high temperatures of 200--400 K, consistent with previous measurements of the temperature in the region, and produced by the nearby massive stars. Therefore, although W51 IRS2 seems to be undergoing a thermally inhibited fragmentation phase, this does not seem to prevent the formation of a protocluster associated with W51 North.

  • ALMA Fragmented Source Catalogue in Orion (FraSCO) I. Outflow interaction within an embedded cluster in OMC-2/FIR3, FIR4, and FIR5

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a high angular resolution ($\sim1"$) and wide-field ($2'.9 \times 1'.9$) image of the 1.3-mm continuum, CO($J$ = 2--1) line, and SiO($J$ = 5--4) line emissions toward an embedded protocluster, FIR3, FIR4, and FIR5, in the Orion Molecular Cloud 2 obtained from the Atacama Large Millimeter/submillimeter Array (ALMA). We identify 51 continuum sources, 36 of which are newly identified in this study. Their dust masses, projected sizes, and $\mathrm{H_2}$ gas number densities are estimated to be $3.8 \times 10^{-5}$--$ 1.1 \times 10^{-2} \mathrm{M_{\odot}}$, 290--2000 au, and $6.4 \times 10^{6}$--$3.3 \times 10^{8}\,\mathrm{cm^{-3}}$, respectively. The results of a Jeans analysis show that $\sim80\,\%$ of the protostellar sources and $\sim15\,\%$ of the prestellar sources are gravitationally bound. We identify 12 molecular outflows traced in the CO($J$ = 2--1) emission, six of which are newly detected. We spatially resolve shocked gas structures traced by the SiO($J$ = 5--4) emission in this region for the first time. We identify shocked gas originating from outflows and other shocked regions. These results provide direct evidence of an interaction between a dust condensation, FIR4, and an energetic outflow driven by HOPS-370 located within FIR3. A comparison of the outflow dynamical timescales, fragmentation timescales, and protostellar ages shows that the previously proposed triggered star-formation scenario in FIR4 is not strongly supported. We also discuss the spatial distribution of filaments identified in our continuum image by comparing it with a previously identified hub-fiber system in the $\mathrm{N_2H^+}$ line.