按提交时间
按主题分类
按作者
按机构
您选择的条件: Jianghui Ji
  • Near Mean Motion Resonance of Terrestrial Planet Pair Induced by Giant Planet: Application to Kepler-68 System

    分类: 天文学 >> 天文学 提交时间: 2024-06-08

    摘要: In this work, we investigate configuration formation of two inner terrestrial planets near mean motion resonance (MMRs) induced by the perturbation of a distant gas-giant for the Kepler-68 system, by conducting thousands of numerical simulations. The results show that the formation of terrestrial planets is relevant to the speed of Type I migration, the mass of planets, and the existence of giant planet. The mass and eccentricity of the giant planet may play a crucial role in shaping the final configuration of the system. The inner planet pair can be trapped in 5:3 or 7:4 MMRs if the giant planet revolves the central star with an eccentric orbit, which is similar to the observed configuration of Kepler-68. Moreover, we find that the eccentricity of the middle planet can be excited to roughly 0.2 if the giant planet is more massive than 5 $M_J$,otherwise the terrestrial planets are inclined to remain near-circular orbits. Our study may provide a likely formation scenario for the planetary systems that harbor several terrestrial planets near MMRs inside and one gas-giant exterior to them.

  • Determination of size, albedo and thermal inertia of 10 Vesta family asteroids with WISE/NEOWISE observations

    分类: 天文学 >> 天文学 提交时间: 2024-06-08

    摘要: In this work, we investigate the size, thermal inertia, surface roughness and geometric albedo of 10 Vesta family asteroids by using the Advanced Thermophysical Model (ATPM), based on the thermal infrared data acquired by mainly NASA’s Wide-field Infrared Survey Explorer (WISE). Here we show that the average thermal inertia and geometric albedo of the investigated Vesta family members are 42 $ rm J m^{-2} s^{-1/2} K^{-1}$ and 0.314, respectively, where the derived effective diameters are less than 10 km. Moreover, the family members have a relatively low roughness fraction on their surfaces. The similarity in thermal inertia and geometric albedo among the V-type Vesta family member may reveal their close connection in the origin and evolution. As the fragments of the cratering event of Vesta, the family members may have undergone similar evolution process, thereby leading to very close thermal properties. Finally, we estimate their regolith grain sizes with different volume filling factors.

  • A Tale of Planet Formation: From Dust to Planets

    分类: 天文学 >> 天文学 提交时间: 2024-06-08

    摘要: The characterization of exoplanets and their birth protoplanetary disks has enormously advanced in the last decade. Benefitting from that, our global understanding of the planet formation processes has been substantially improved. In this review, we first summarize the cutting-edge states of the exoplanet and disk observations. We further present a comprehensive panoptic view of modern core accretion planet formation scenarios, including dust growth and radial drift, planetesimal formation by the streaming instability, core growth by planetesimal accretion and pebble accretion. We discuss the key concepts and physical processes in each growth stage and elaborate on the connections between theoretical studies and observational revelations. Finally, we point out the critical questions and future directions of planet formation studies.

  • Peculiar orbital characteristics of Earth quasi-satellite 469219 Kamo`oalewa: implications for the Yarkovsky detection and orbital uncertainty propagation

    分类: 地球科学 >> 空间物理学 分类: 其他 提交时间: 2024-06-08

    摘要: 469219 Kamo`oalewa is selected as one of the primary targets of Tianwen-2 mission, which is currently believed to be the most stable quasi-satellite of Earth. Here we derive a weak detection of the Yarkovsky effect for Kamo`oalewa, giving $A_2 = -1.075 pm0.447 times 10^{-13} rm{au/d}^2$, with the available ground-based optical observations from Minor Planet Center and a relatively conservative weighting scheme. Due to the quasi-satellite resonance with Earth, we show that the detection of Yarkovsky effect by orbital fitting with astrometric observations becomes difficult as its orbital drift shows a slow oscillatory growth resulting from the Yarkovsky effect. In addition, we extensively explore the characteristics of orbital uncertainty propagation and find that the positional uncertainty mainly arises from the geocentric radial direction in 2010-2020, and then concentrates in the heliocentric transverse direction in 2020-2030. Furthermore, the heliocentric transverse uncertainty is clearly monthly dependent, which can arrive at a minimum around January and a maximum around July as the orbit moves towards the leading and trailing edges, respectively, in 2025-2027. Finally, we investigate a long-term uncertainty propagation in the quasi-satellite regime, implying that the quasi-satellite resonance with Earth may play a crucial role in constraining the increase of uncertainty over time. Such interesting feature further implies that the orbital precision of Kamo`oalewa is relatively stable at its quasi-satellite phase, which may also be true for other quasi-satellites of Earth.

  • PyMsOfa: A Python Package for the Standards of Fundamental Astronomy (SOFA) Service

    分类: 天文学 >> 天文学 提交时间: 2024-06-08

    摘要: The Standards of Fundamental Astronomy (SOFA) is a service provided by the International Astronomical Union (IAU) that offers algorithms and software for astronomical calculations, which was released in two versions by FORTRAN 77 and ANSI C, respectively. In this work, we implement the python package PyMsOfa for SOFA service by three ways: (1) a python wrapper package based on a foreign function library for Python (ctypes), (2) a python wrapper package with the foreign function interface for Python calling C code (cffi), and (3) a python package directly written in pure python codes from SOFA subroutines. The package PyMsOfa has fully implemented 247 functions of the original SOFA routines. In addition, PyMsOfa is also extensively examined, which is exactly consistent with those test examples given by the original SOFA. This python package can be suitable to not only the astrometric detection of habitable planets of the Closeby Habitable Exoplanet Survey (CHES) mission (Ji et al. 2022), but also for the frontiers themes of black holes and dark matter related to astrometric calculations and other fields. The source codes are available via https://github.com/CHES2023/PyMsOfa.

  • Evolution of the Planetary Obliquity: The Eccentric Kozai-Lidov Mechanism Coupled with Tide

    分类: 天文学 >> 天文学 提交时间: 2024-06-03

    摘要: The planetary obliquity plays a significant role in determining physical properties of planetary surfaces and climate. As direct detection is constrained due to the present observation accuracy, kinetic theories are helpful to predict the evolution of the planetary obliquity. Here the coupling effect between the eccentric Kozai-Lidov (EKL) effect and the equilibrium tide is extensively investigated, the planetary obliquity performs to follow two kinds of secular evolution paths, based on the conservation of total angular momentum. The equilibrium timescale of the planetary obliquity $t_{ mathrm{eq}}$ varies along with $r_{t}$, which is defined as the initial timescale ratio of the tidal dissipation and secular perturbation. We numerically derive the linear relationship between $t_{ mathrm{eq}}$ and $r_{t}$ with the maximum likelihood method. The spin-axis orientation of S-type terrestrials orbiting M-dwarfs reverses over $90^ circ$ when $r_{t} > 100$, then enter the quasi-equilibrium state between $40^ circ$ and $60^ circ$, while the maximum obliquity can reach $130^ circ$ when $r_{t} > 10^4 $. Numerical simulations show that the maximum obliquity increases with the semi-major axis ratio $a_1$/$a_2$, but is not so sensitive to the eccentricity $e_2$. The likelihood of obliquity flip for S-type terrestrials in general systems with $a_2 < 45$ AU is closely related to $m_1$. The observed potential oblique S-type planets HD 42936 b, GJ 86 Ab and $ tau$ Boot Ab are explored to have a great possibility to be head-down over the secular evolution of spin.

  • Closeby Habitable Exoplanet Survey (CHES). I. Astrometric Noise and Planetary Detection Efficiency due to Stellar Spots and Faculae

    分类: 地球科学 >> 空间物理学 分类: 其他 分类: 其他 分类: 其他 提交时间: 2024-06-03

    摘要: The Closeby Habitable Exoplanet Survey (CHES) is dedicated to the astrometric exploration for habitable-zone Earth-like planets orbiting solar-type stars in close proximity, achieving unprecedented micro-arcsecond precision. Given the elevated precision, thorough consideration of photocenter jitters induced by stellar activity becomes imperative. This study endeavors to model the stellar activity of solar-type stars, compute astrometric noise, and delineate the detection limits of habitable planets within the astrometric domain. Simulations were conducted for identified primary targets of CHES, involving the generation of simulated observed data for astrometry and photometry, accounting for the impact of stellar activity. Estimation of activity levels in our samples was achieved through chromospheric activity indices, revealing that over 90% of stars exhibited photocenter jitters below 1 $ mu mathrm{as}$. Notably, certain proximate stars, such as $ alpha$ Cen A and B, displayed more discernible noise arising from stellar activity. Subsequent tests were performed to evaluate detection performance, unveiling that stellar activity tends to have a less pronounced impact on planetary detectability for the majority of stars. Approximately 95% of targets demonstrated a detection efficiency exceeding 80%. However, for several cold stars, e.g., HD 32450 and HD 21531, with the habitable zones close to the stars, a reduction in detection efficiency was observed. These findings offer invaluable insights into the intricate interplay between stellar activity and astrometric precision, significantly advancing our understanding in the search for habitable planets.

  • CHES: a space-borne astrometric mission for the detection of habitable planets of the nearby solar-type stars

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Closeby Habitable Exoplanet Survey (CHES) mission is proposed to discover habitable-zone Earth-like planets of the nearby solar-type stars ($\sim 10~\mathrm{pc}$ away from our solar system) via micro-arcsecond relative astrometry. The major scientific objectives of CHES are: to search for Earth Twins or terrestrial planets in habitable zones orbiting 100 FGK nearby stars; further to conduct a comprehensive survey and extensively characterize the nearby planetary systems. The primary payload is a high-quality, low-distortion, high-stability telescope. The optical subsystem is a coaxial three-mirror anastigmat (TMA) with a $1.2 \mathrm{~m}$-aperture, $0.44^{\circ} \times 0.44^{\circ}$ field of view and $500 \mathrm{~nm}-900 \mathrm{~nm}$ working waveband. The camera focal plane is composed of 81 MOSAIC scientific CMOS detectors each with $4 \mathrm{~K} \times 4 \mathrm{~K}$ pixels. The heterodyne laser interferometric calibration technology is employed to ensure micro-arcsecond level (1 $\mu$as) relative astrometry precision to meet the requirements for detection of Earth-like planets. CHES satellite operates at the Sun-Earth L2 point and observes the entire target stars for 5 years. CHES will offer the first direct measurements of true masses and inclinations of Earth Twins and super-Earths orbiting our neighbor stars based on micro-arcsecond astrometry from space. This will definitely enhance our understanding of the formation of diverse nearby planetary systems and the emergence of other worlds for solar-type stars, and finally to reflect the evolution of our own solar system.

  • Mid-IR Observations of IRAS, AKARI, WISE/NEOWISE and Subaru for Large Icy Asteroid (704) Interamnia: a New Perspective of Regolith Properties and Water Ice Fraction

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: (704) Interamnia is one of the largest asteroids that locates in the outer main-belt region, which may contain a large amount of water ice underneath its surface. We observe this asteroid using 8.2 m Subaru telescope at mid-infrared wavebands, and utilize thermophysical model for realistic surface layers (RSTPM) to analyze mid-infrared data from Subaru along with those of IRAS, AKARI and WISE/NEOWISE. We optimize the method to convert the WISE magnitude to thermal infrared flux with temperature dependent color corrections, which can provide significant references for main-belt asteroids at a large heliocentric distance with low surface temperature. We derive best-fitting thermal parameters of Interamnia - a mean regolith grain size of $190_{-180}^{+460}~\rm \mu m$, with a roughness of $0.30_{-0.17}^{+0.35}$ and RMS slope of $27_{-9}^{+13}$ degrees, thereby producing thermal inertia ranging from 9 to $92~\rm Jm^{-2}s^{-1/2}K^{-1}$ due to seasonal temperature variation. The geometric albedo and effective diameter are evaluated to be $0.0472_{-0.0031}^{+0.0033}$ and $339_{-11}^{+12}~\rm km$, respectively, being indicative of a bulk density of $1.86\pm0.63~\rm g/cm^3$. The low thermal inertia is consistent with typical B/C-type asteroids with $D\geq100$ km. The tiny regolith grain size suggests the presence of a fine regolith on the surface of Interamnia. Moreover, the seasonal and diurnal temperature distribution indicates that thermal features between southern and northern hemisphere appear to be very different. Finally, we present an estimation of volume fraction of water ice of $9\%\sim66\%$ from the published grain density and porosity of carbonaceous chondrites.

  • Mid-IR Observations of IRAS, AKARI, WISE/NEOWISE and Subaru for Large Icy Asteroid (704) Interamnia: a New Perspective of Regolith Properties and Water Ice Fraction

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: (704) Interamnia is one of the largest asteroids that locates in the outer main-belt region, which may contain a large amount of water ice underneath its surface. We observe this asteroid using 8.2 m Subaru telescope at mid-infrared wavebands, and utilize thermophysical model for realistic surface layers (RSTPM) to analyze mid-infrared data from Subaru along with those of IRAS, AKARI and WISE/NEOWISE. We optimize the method to convert the WISE magnitude to thermal infrared flux with temperature dependent color corrections, which can provide significant references for main-belt asteroids at a large heliocentric distance with low surface temperature. We derive best-fitting thermal parameters of Interamnia - a mean regolith grain size of $190_{-180}^{+460}~\rm \mu m$, with a roughness of $0.30_{-0.17}^{+0.35}$ and RMS slope of $27_{-9}^{+13}$ degrees, thereby producing thermal inertia ranging from 9 to $92~\rm Jm^{-2}s^{-1/2}K^{-1}$ due to seasonal temperature variation. The geometric albedo and effective diameter are evaluated to be $0.0472_{-0.0031}^{+0.0033}$ and $339_{-11}^{+12}~\rm km$, respectively, being indicative of a bulk density of $1.86\pm0.63~\rm g/cm^3$. The low thermal inertia is consistent with typical B/C-type asteroids with $D\geq100$ km. The tiny regolith grain size suggests the presence of a fine regolith on the surface of Interamnia. Moreover, the seasonal and diurnal temperature distribution indicates that thermal features between southern and northern hemisphere appear to be very different. Finally, we present an estimation of volume fraction of water ice of $9\%\sim66\%$ from the published grain density and porosity of carbonaceous chondrites.

  • The Terrestrial Planet Formation around M Dwarfs: In-situ, Inward Migration or Reversed Migration

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Terrestrial planets are commonly observed to orbit M dwarfs with close-in trajectories. In this work, we extensively perform N-body simulations of planetesimal accretion with three models of in-situ, inward migration and reversed migration to explore terrestrial formation in tightly compact systems of M dwarfs. In the simulations, the solid disks are assumed to be 0.01\% of the masses of host stars and spread from 0.01 to 0.5 AU with the surface density profile scaling with $r^{-k}$ according to the observations. Our results show that in-situ scenario may produce $7.77^{+3.23}_{-3.77}$ terrestrial planets with an average mass of $1.23^{+4.01}_{-0.93} \ M_{\oplus}$ around M dwarfs. The number of planets tends to increase as the disk slope is steeper or with a larger stellar mass. Moreover, we show that $2.55^{+1.45}_{-1.55}$ planets with mass of $3.76^{+8.77}_{-3.46} \ M_{\oplus}$ are formed in the systems via inward migration, while $2.85^{+1.15}_{-0.85}$ planets with $3.01^{+13.77}_{-2.71} \ M_{\oplus}$ are yielded under reversed migration. Migration scenarios can also deliver plentiful water from the exterior of ice line to the interior due to more efficient accretion. The simulation outcomes of reversed migration model produce the best matching with observations, being suggestive of a likely mechanism for planetary formation around M dwarfs.

  • FOSSIL: I. The Spin Rate Limit of Jupiter Trojans

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Rotation periods of 53 small (diameters $2 < D < 40$ km) Jupiter Trojans (JTs) were derived using the high-cadence light curves obtained by the FOSSIL phase I survey, a Subaru/Hyper Suprime-Cam intensive program. These are the first reported periods measured for JTs with $D < 10$ km. We found a lower limit of the rotation period near 4 hr, instead of the previously published result of 5 hr (Ryan et al. 2017; Szabo et al. 2017, 2020) found for larger JTs. Assuming a rubble-pile structure for JTs, a bulk density of 0.9 gcm$^{-3}$ is required to withstand this spin rate limit, consistent with the value $0.8-1.0$ gcm$^{-3}$ (Marchis et al. 2006; Mueller et al. 2010; Buie et al. 2015; Berthier et al. 2020) derived from the binary JT system, (617) Patroclus-Menoetius system.

  • Nii: a Bayesian orbit retrieval code applied to differential astrometry

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Here we present an open source Python-based Bayesian orbit retrieval code (Nii) that implements an automatic parallel tempering Markov chain Monte Carlo (APT-MCMC) strategy. Nii provides a module to simulate the observations of a space-based astrometry mission in the search for exoplanets, a signal extraction process for differential astrometric measurements using multiple reference stars, and an orbital parameter retrieval framework using APT-MCMC. We further verify the orbit retrieval ability of the code through two examples corresponding to a single-planet system and a dual-planet system. In both cases, efficient convergence on the posterior probability distribution can be achieved. Although this code specifically focuses on the orbital parameter retrieval problem of differential astrometry, Nii can also be widely used in other Bayesian analysis applications.

  • Extremely Inclined Orbit of S-type Planet $\gamma$ Cep Ab Induced by Eccentric Kozai-Lidov Mechanism

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: $\gamma$ Cep Ab is a typical S-type planet, which occupies a nearly perpendicular planetary orbit relative to the binary. Here we use the Markov Chain Monte Carlo (MCMC) sampler to conduct full N-body fitting and derive self-consistent orbital solutions for this hierarchical system. Then we employ the Eccentric Kozai-Lidov (EKL) mechanism to explain the extremely inclined orbit of S-type planet $\gamma$ Cep Ab. The EKL mechanism plays an essential role in exploring significant oscillations of the mutual inclination $i_{\mathrm{mut}}$ between the planet and the secondary star. We perform qualitative analysis and extensive numerical integrations to investigate the flip conditions and timescales of $\gamma$ Cep Ab's orbit. When the planetary mass is 15 $M_{\mathrm{Jup}}$, the planet can reach $i_{\mathrm{mut}} \sim$ 113$^{\circ}$ with the critical initial conditions of $i_{\mathrm{mut}} < 60^{\circ}$ and $e_1<0.7$. The timescale for the first orbital flip decreases with the increase of the perturbation Hamiltonian. Flipping orbits of $\gamma$ Cep Ab are confirmed to have a large possibility to retain stable based on surfaces of section and the secular stability criterion. Furthermore, we extend the application of EKL to general S-type planetary systems with $a_1/a_2\leq0.1$, where the most intense excitation of $i_{\mathrm{mut}}$ occurs when $a_1/a_2=0.1$ and $e_2 \sim 0.8$, and the variation of planetary mass mainly affect the flip possibility where $e_1\leq 0.3$.

  • Thermophysical Modeling of 20 Themis Family Asteroids with WISE/NEOWISE Observations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Themis family is one of the largest and oldest asteroid populations in the main-belt. Water-ice may widely exist on the parent body (24) Themis. In this work, we employ the Advanced Thermophysical Model as well as mid-infrared measurements from NASA's Wide-Field Infrared Survey Explorer to explore thermal parameters of 20 Themis family members. Here we show that the average thermal inertia and geometric albedo are ~$39.5\pm26.0 ~\rm J m^{-2} s^{-1/2} K^{-1}$ and $0.067\pm0.018$, respectively. The family members have a relatively moderate roughness fraction on their surfaces. We find that the relatively low albedos of Themis members are consistent with the typical values of B-type and C-type asteroids. As aforementioned, Themis family bears a very low thermal inertia, which indicates a fine and mature regolith on their surfaces. The resemblance of thermal inertia and geometric albedo of Themis members may reveal their close connection in origin and evolution. In addition, we present the compared results of thermal parameters for several prominent families.