您选择的条件: Baojiu Li
  • An emulator-based halo model in modified gravity -- I. The halo concentration-mass relation and density profile

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In this series of papers we present an emulator-based halo model for the non-linear clustering of galaxies in modified gravity cosmologies. In the first paper, we present emulators for the following halo properties: the halo mass function, concentration-mass relation and halo-matter cross-correlation function. The emulators are trained on data extracted from the \textsc{FORGE} and \textsc{BRIDGE} suites of $N$-body simulations, respectively for two modified gravity (MG) theories: $f(R)$ gravity and the DGP model, varying three standard cosmological parameters $\Omega_{\mathrm{m0}}, H_0, \sigma_8$, and one MG parameter, either $\bar{f}_{R0}$ or $r_{\mathrm{c}}$. Our halo property emulators achieve an accuracy of $\lesssim 1\%$ on independent test data sets. We demonstrate that the emulators can be combined with a galaxy-halo connection prescription to accurately predict the galaxy-galaxy and galaxy-matter correlation functions using the halo model framework.

  • Fast full N-body simulations of generic modified gravity: conformal coupling models

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present MG-GLAM, a code developed for the very fast production of full $N$-body cosmological simulations in modified gravity (MG) models. We describe the implementation, numerical tests and first results of a large suite of cosmological simulations for three classes of MG models with conformal coupling terms: the $f(R)$ gravity, symmetron and coupled quintessence models. Derived from the parallel particle-mesh code GLAM, MG-GLAM incorporates an efficient multigrid relaxation technique to solve the characteristic nonlinear partial differential equations of these models. For $f(R)$ gravity, we have included new variants to diversify the model behaviour, and we have tailored the relaxation algorithms to these to maintain high computational efficiency. In a companion paper, we describe versions of this code developed for derivative coupling MG models, including the Vainshtein- and K-mouflage-type models. MG-GLAM can model the prototypes for most MG models of interest, and is broad and versatile. The code is highly optimised, with a tremendous speedup of a factor of more than a hundred compared with earlier $N$-body codes, while still giving accurate predictions of the matter power spectrum and dark matter halo abundance. MG-GLAM is ideal for the generation of large numbers of MG simulations that can be used in the construction of mock galaxy catalogues and the production of accurate emulators for ongoing and future galaxy surveys.

  • Spherical accretion of collisional gas in modified gravity I: self-similar solutions and a new cosmological hydrodynamical code

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The spherical collapse scenario has great importance in cosmology since it captures several crucial aspects of structure formation. The presence of self-similar solutions in the Einstein-de Sitter (EdS) model greatly simplifies its analysis, making it a powerful tool to gain valuable insights into the real and more complicated physical processes involved in galaxy formation. While there has been a large body of research to incorporate various additional physical processes into spherical collapse, the effect of modified gravity (MG) models, which are popular alternatives to the $\Lambda CDM$ paradigm to explain the cosmic acceleration, is still not well understood in this scenario. In this paper, we study the spherical accretion of collisional gas in a particular MG model, which is a rare case that also admits self-similar solutions. The model displays interesting behaviours caused by the enhanced gravity and a screening mechanism. Despite the strong effects of MG, we find that its self-similar solution agrees well with that of the EdS model. These results are used to assess a new cosmological hydrodynamical code for spherical collapse simulations introduced here, which is based on the hyperbolic partial differential equation engine ExaHyPE 2. Its good agreement with the theoretical predictions confirms the reliability of this code in modelling astrophysical processes in spherical collapse. We will use this code to study the evolution of gas in more realistic MG models in future work.

  • MGLenS: Modified gravity weak lensing simulations for emulation-based cosmological inference

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present MGLenS, a large series of modified gravity lensing simulations tailored for cosmic shear data analyses and forecasts in which cosmological and modified gravity parameters are varied simultaneously. Based on the FORGE and BRIDGE $N$-body simulation suites presented in companion papers, we construct 500,000 deg$^2$ of mock Stage-IV lensing data, sampling a pair of 4-dimensional volumes designed for the training of emulators. We validate the accuracy of MGLenS with inference analyses based on the lensing power spectrum exploiting our implementation of $f(R)$ and nDGP theoretical predictions within the cosmoSIS cosmological inference package. A Fisher analysis reveals that the vast majority of the constraining power from such a survey comes from the highest redshift galaxies alone. We further find from a full likelihood sampling that cosmic shear can achieve 95% CL constraints on the modified gravity parameters of log$_{10}\left[ f_{R_0}\right] -0.05$, after marginalising over intrinsic alignments of galaxies and including scales up to $\ell=5000$. Such a survey setup could in fact detect with more than $3\sigma$ confidence $f(R)$ values larger than $3 \times 10^{-6}$ and $H_0 r_c$ smaller than 1.0. Scale cuts at $\ell=3000$ reduce the degeneracy breaking between $S_8$ and the modified gravity parameters, while photometric redshift uncertainty seem to play a subdominant role in our error budget. We finally explore the consequences of analysing data with the wrong gravity model, and report the catastrophic biases for a number of possible scenarios. The Stage-IV MGLenS simulations, the FORGE and BRIDGE emulators and the cosmoSIS interface modules will be made publicly available upon journal acceptance.

  • Biased tracer reconstruction with halo mass information

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Plenty of crucial information about our Universe is encoded in the cosmic large-scale structure (LSS). However, the extractions of these information are usually hindered by the nonlinearities of the LSS, which can be largely alleviated by various techniques known as the reconstruction. In realistic applications, the efficiencies of these methods are always degraded by many limiting factors, a quite important one being the shot noise induced by the finite number density of biased matter tracers (i.e., luminous galaxies or dark matter halos) in observations. In this work, we explore the gains of biased tracer reconstruction achieved from halo mass information, which can suppress shot noise component and dramatically improves the cross-correlation between tracer field and dark matter. To this end, we first closely study the clustering biases and the stochasticity properties of halo fields with various number densities under different weighting schemes, i.e., the uniform, mass and optimal weightings. Then, we apply the biased tracer reconstruction method to these different weighted halo fields and investigate how linear bias and observational mass scatter affect the reconstruction performance. Our results demonstrate that halo masses are critical information for significantly improving the performance of biased tracer reconstruction, indicating a great application potential for substantially promoting the precision of cosmological measurements [especially for baryon acoustic oscillations (BAO)] in the ambitious on-going and future galaxy surveys.

  • Nonlinear reconstruction of features in the primordial power spectrum from large-scale structure

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Potential features in the primordial power spectrum have been searched for in galaxy surveys in recent years since these features can assist in understanding the nature of inflation. The null detection to date suggests that any such features should be fairly weak, and next-generation galaxy surveys, with their unprecedented sizes and precisions, are in a position to place stronger constraints than before. However, even if such primordial features once existed in the early Universe, they would have been significantly damped in the nonlinear regime at low redshift due to structure formation, which makes them difficult to be directly detected in real observations. A potential way to tackle this challenge for probing the features is to undo the cosmological evolution, i.e., using reconstruction to obtain an approximate linear density field. By employing a set of N-body simulations, here we show that a recently-proposed nonlinear reconstruction algorithm can effectively retrieve damped oscillatory features from halo catalogues and improve the accuracy of the measurement of feature parameters (assuming that such primordial features do exist). We do a Fisher analysis to forecast how nonlinear reconstruction affects the constraining power, and find that it can lead to significantly more robust constraints on the feature amplitude for a DESI-like survey. Comparing nonlinear reconstruction with other ways of improving constraints, such as increasing the survey volume and range of scales, this shows that it is possible to achieve what the latter do, but at a lower cost.