您选择的条件: Xiangkun Liu
  • KiDS-1000: cross-correlation with Planck cosmic microwave background lensing and intrinsic alignment removal with self-calibration

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Galaxy shear - cosmic microwave background (CMB) lensing convergence cross-correlations contain additional information on cosmology to auto-correlations. While being immune to certain systematic effects, they are affected by the galaxy intrinsic alignments (IA). This may be responsible for the reported low lensing amplitude of the galaxy shear $\times$ CMB convergence cross-correlations, compared to the standard Planck $\Lambda$CDM (cosmological constant and cold dark matter) cosmology prediction. In this work, we investigate how IA affects the Kilo-Degree Survey (KiDS) galaxy lensing shear - Planck CMB lensing convergence cross-correlation and compare it to previous treatments with or without IA taken into consideration. More specifically, we compare marginalization over IA parameters and the IA self-calibration (SC) method (with additional observables defined only from the source galaxies) and prove that SC can efficiently break the degeneracy between the CMB lensing amplitude $A_{\rm lens}$ and the IA amplitude $A_{\rm IA}$. We further investigate how different systematics affect the resulting $A_{\rm IA}$ and $A_{\rm lens}$, and validate our results with the MICE2 simulation. We find that by including the SC method to constrain IA, the information loss due to the degeneracy between CMB lensing and IA is strongly reduced. The best-fit values are $A_{\rm lens}=0.84^{+0.22}_{-0.22}$ and $A_{\rm IA}=0.60^{+1.03}_{-1.03}$, while different angular scale cuts can affect $A_{\rm lens}$ by $\sim10\%$. We show that appropriate treatment of the boost factor, cosmic magnification, and photometric redshift modeling is important for obtaining the correct IA and cosmological results.

  • Weak lensing peak statistics -- steepness versus height

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In weak-lensing cosmological studies, peak statistics is sensitive to nonlinear structures and thus complementary to cosmic shear two-point correlations. In this paper, we explore a new approach, namely, the peak steepness statistics, with the overall goal to understand the cosmological information embedded there in comparison with the commonly used peak height statistics. We perform the analyses with ray-tracing simulations considering different sets of cosmological parameters $\Omega_{\rm m}$ and $\sigma_8$. A theoretical model to calculate the abundance of high peaks based on steepness is also presented, which can well describe the main trend of the peak distribution from simulations. We employ $\Delta\chi^2$ and Fisher analyses to study the cosmological dependence of the two peak statistics using our limited sets of simulations as well as our theoretical model. Within our considerations without including potential systematic effects, the results show that the steepness statistics tends to have higher sensitivities to the cosmological parameters than the peak height statistics and this advantage is diluted with the increase of the shape noise. Using the theoretical model, we investigate the physical reasons accounting for the different cosmological information embedded in the two statistics. Our analyses indicate that the projection effect from large-scale structures plays an important role to enhance the gain from the steepness statistics. The redshift and cosmology dependence of dark matter halo density profiles also contributes to the differences between the two statistics.

  • Void Lensing in Cubic Galileon Gravity

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Weak lensing studies via cosmic voids are a promising probe of Modified Gravity (MG). The Excess Surface mass Density (ESD) is widely used as a lensing statistics in weak lensing researches. In this paper we use the ray-tracing method to study the ESD around voids in simulations based on the Cubic Galileon (CG) gravity. With the compilation of N-body simulation and ray-tracing method, changes on the structure formation and deflection angle resulting from MG can both be considered, making the extraction of lensing signals more realistic. We find good agreements between the measurement and theoretical prediction of ESD for CG gravity. Meanwhile, the effect on the deflection angle is found to be incomparable to that on the structure formation in CG, indicating an equivalence between ESD (statistics) and the projection of 3D dark matter density field for this gravity. Finally, we demonstrate that it is impossible to distinguish CG and General Relativity in our simulation with an effective survey area $\sim1550deg^2$ and a galaxy number density of $10arcmin^{-2}$, implying that void lensing statistics may not be the optimal probe on testing CG gravity. The methodology employed in this paper that combines N-body simulation and ray-tracing method can be a robust way to measure the lensing signals from simulations based on the MGs, and especially on that who significantly modifies the deflection angle.

  • Weak lensing peak statistics -- steepness versus height

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In weak-lensing cosmological studies, peak statistics is sensitive to nonlinear structures and thus complementary to cosmic shear two-point correlations. In this paper, we explore a new approach, namely, the peak steepness statistics, with the overall goal to understand the cosmological information embedded there in comparison with the commonly used peak height statistics. We perform the analyses with ray-tracing simulations considering different sets of cosmological parameters $\Omega_{\rm m}$ and $\sigma_8$. A theoretical model to calculate the abundance of high peaks based on steepness is also presented, which can well describe the main trend of the peak distribution from simulations. We employ $\Delta\chi^2$ and Fisher analyses to study the cosmological dependence of the two peak statistics using our limited sets of simulations as well as our theoretical model. Within our considerations without including potential systematic effects, the results show that the steepness statistics tends to have higher sensitivities to the cosmological parameters than the peak height statistics and this advantage is diluted with the increase of the shape noise. Using the theoretical model, we investigate the physical reasons accounting for the different cosmological information embedded in the two statistics. Our analyses indicate that the projection effect from large-scale structures plays an important role to enhance the gain from the steepness statistics. The redshift and cosmology dependence of dark matter halo density profiles also contributes to the differences between the two statistics.

  • Cosmological Studies from HSC-SSP Tomographic Weak Lensing Peak Abundances

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We perform weak lensing tomographic peak studies using the first-year shear data from Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) survey. The effective area used in our analyses after field selection, mask and boundary exclusions is $\sim 58 \deg^2$. The source galaxies are divided into low- and high-redshift bins with $0.2\le z_p\le0.85$ and $0.85\le z_p\le1.5$, respectively. We utilize our halo-based theoretical peak model including the projection effect of large-scale structures to derive cosmological constraints from the observed tomographic high peak abundances with the signal-to-noise ratio in the range of $\nu_{\rm N}=[3.5,5.5]$. These high peaks are closely associated with the lensing effects of massive clusters of galaxies. Thus the inclusion of their member galaxies in the shear catalog can lead to significant source clustering and dilute their lensing signals. We account for this systematic effect in our theoretical modelling. Additionally, the impacts of baryonic effects, galaxy intrinsic alignments, as well as residual uncertainties in shear and photometric redshift calibrations are also analyzed. Within the flat $\Lambda$CDM model, the derived constraint is $S_8=0.758_{-0.076}^{+0.033}$ and $0.768_{-0.057}^{+0.030}$ with the source clustering information measured from the two cluster catalogs, CAMIRA and WZL, respectively. The asymmetric uncertainties are due to the different degeneracy direction of $(\Omega_{\rm m}, \sigma_8)$ from high peak abundances comparing to that from the cosmic shear two-point correlations which give rise approximately the power index $\alpha=0.5$. Fitting to our constraints, we obtain $\alpha\approx 0.38$ and $\Sigma_8=0.772_{-0.032}^{+0.028}$ (CAMIRA) and $0.781_{-0.033}^{+0.028}$ (WZL). In comparison with the results from non-tomographic peak analyses, the $1\sigma$ uncertainties on $\Sigma_8$ are reduced by a factor of $\sim1.3$.

  • Constraining interacting dark energy models with the halo concentration - mass relation

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The interacting dark energy (IDE) model is a promising alternative cosmological model which has the potential to solve the fine-tuning and coincidence problems by considering the interaction between dark matter and dark energy. Previous studies have shown that the energy exchange between the dark sectors in this model can significantly affect the dark matter halo properties. In this study, utilising a large set of cosmological $N$-body simulations, we analyse the redshift evolution of the halo concentration - mass ($c$ - $M$) relation in the IDE model, and show that the $c$ - $M$ relation is a sensitive proxy of the interaction strength parameter $\xi_2$, especially at lower redshifts. Furthermore, we construct parametrized formulae to quantify the dependence of the $c$ - $M$ relation on $\xi_2$ at redshifts ranging from $z=0$ to $0.6$. Our parametrized formulae provide a useful tool in constraining $\xi_2$ with the observational $c$ - $M$ relation. As a first attempt, we use the data from X-ray, gravitational lensing, and galaxy rotational curve observations and obtain a tight constraint on $\xi_2$, i.e. $\xi_2 = 0.071 \pm 0.034$. Our work demonstrates that the halo $c$ - $M$ relation, which reflects the halo assembly history, is a powerful probe to constrain the IDE model.

  • Effects of galaxy intrinsic alignment on weak lensing peak statistics

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The galaxy intrinsic alignment (IA) is a dominant source of systematics in weak lensing (WL) studies. In this paper, by employing large simulations with semi-analytical galaxy formation, we investigate the IA effects on WL peak statistics. Different simulated source galaxy samples of different redshift distributions are constructed, where both WL shear and IA signals are included. Convergence reconstruction and peak statistics are then performed for these samples. Our results show that the IA effects on peak abundances mainly consist of two aspects. One is the additional contribution from IA to the shape noise. The other is from the satellite IA that can affect the peak signals from their host clusters significantly. The latter depends on the level of inclusion in a shear sample of the satellite galaxies of the clusters that contribute to WL peaks, and thus is sensitive to the redshift distribution of source galaxies. We pay particular attention to satellite IA and adjust it artificially in the simulations to analyze the dependence of the satellite IA impacts on its strength. This information can potentially be incorporated into the modeling of WL peak abundances, especially for high peaks physically originated from massive clusters of galaxies, and thus to mitigate the IA systematics on the cosmological constraints derived from WL peaks.

  • Cosmological Studies from HSC-SSP Tomographic Weak Lensing Peak Abundances

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We perform weak lensing tomographic peak studies using the first-year shear data from Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) survey. The effective area used in our analyses after field selection, mask and boundary exclusions is $\sim 58 \deg^2$. The source galaxies are divided into low- and high-redshift bins with $0.2\le z_p\le0.85$ and $0.85\le z_p\le1.5$, respectively. We utilize our halo-based theoretical peak model including the projection effect of large-scale structures to derive cosmological constraints from the observed tomographic high peak abundances with the signal-to-noise ratio in the range of $\nu_{\rm N}=[3.5,5.5]$. These high peaks are closely associated with the lensing effects of massive clusters of galaxies. Thus the inclusion of their member galaxies in the shear catalog can lead to significant source clustering and dilute their lensing signals. We account for this systematic effect in our theoretical modelling. Additionally, the impacts of baryonic effects, galaxy intrinsic alignments, as well as residual uncertainties in shear and photometric redshift calibrations are also analyzed. Within the flat $\Lambda$CDM model, the derived constraint is $S_8=0.758_{-0.076}^{+0.033}$ and $0.768_{-0.057}^{+0.030}$ with the source clustering information measured from the two cluster catalogs, CAMIRA and WZL, respectively. The asymmetric uncertainties are due to the different degeneracy direction of $(\Omega_{\rm m}, \sigma_8)$ from high peak abundances comparing to that from the cosmic shear two-point correlations which give rise approximately the power index $\alpha=0.5$. Fitting to our constraints, we obtain $\alpha\approx 0.38$ and $\Sigma_8=0.772_{-0.032}^{+0.028}$ (CAMIRA) and $0.781_{-0.033}^{+0.028}$ (WZL). In comparison with the results from non-tomographic peak analyses, the $1\sigma$ uncertainties on $\Sigma_8$ are reduced by a factor of $\sim1.3$.

  • Detection of Cosmic Magnification via Galaxy Shear -- Galaxy Number Density Correlation from HSC Survey Data

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We propose a novel method to detect cosmic magnification signals by cross-correlating foreground convergence fields constructed from galaxy shear measurements with background galaxy positional distributions, namely shear-number density correlation. We apply it to the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) survey data. With 27 non-independent data points and their full covariance, $\chi_0^2\approx 34.1$ and $\chi_T^2\approx 24.0$ with respect to the null and the cosmological model with the parameters from HSC shear correlation analyses in Hamana et al. 2020 (arXiv:1906.06041), respectively. The Bayes factor of the two is $\log_{10}B_{T0}\approx 2.2$ assuming equal model probabilities of null and HSC cosmology, showing a clear detection of the magnification signals. Theoretically, the ratio of the shear-number density and shear-shear correlations can provide a constraint on the effective multiplicative shear bias $\bar m$ using internal data themselves. We demonstrate the idea with the signals from our HSC-SSP mock simulations and rescaling the statistical uncertainties to a survey of $15000\deg^2$. For two-bin analyses with background galaxies brighter than $m_{lim}=23$, the combined analyses lead to a forecasted constraint of $\sigma(\bar m) \sim 0.032$, $2.3$ times tighter than that of using the shear-shear correlation alone. Correspondingly, $\sigma(S_8)$ with $S_8=\sigma_8(\Omega_\mathrm{m}/0.3)^{0.5}$ is tightened by $\sim 2.1$ times. Importantly, the joint constraint on $\bar m$ is nearly independent of cosmological parameters. Our studies therefore point to the importance of including the shear-number density correlation in weak lensing analyses, which can provide valuable consistency tests of observational data, and thus to solidify the derived cosmological constraints.

  • Constraining interacting dark energy models with the halo concentration - mass relation

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The interacting dark energy (IDE) model is a promising alternative cosmological model which has the potential to solve the fine-tuning and coincidence problems by considering the interaction between dark matter and dark energy. Previous studies have shown that the energy exchange between the dark sectors in this model can significantly affect the dark matter halo properties. In this study, utilising a large set of cosmological $N$-body simulations, we analyse the redshift evolution of the halo concentration - mass ($c$ - $M$) relation in the IDE model, and show that the $c$ - $M$ relation is a sensitive proxy of the interaction strength parameter $\xi_2$, especially at lower redshifts. Furthermore, we construct parametrized formulae to quantify the dependence of the $c$ - $M$ relation on $\xi_2$ at redshifts ranging from $z=0$ to $0.6$. Our parametrized formulae provide a useful tool in constraining $\xi_2$ with the observational $c$ - $M$ relation. As a first attempt, we use the data from X-ray, gravitational lensing, and galaxy rotational curve observations and obtain a tight constraint on $\xi_2$, i.e. $\xi_2 = 0.071 \pm 0.034$. Our work demonstrates that the halo $c$ - $M$ relation, which reflects the halo assembly history, is a powerful probe to constrain the IDE model.

  • KiDS-1000: cross-correlation with Planck cosmic microwave background lensing and intrinsic alignment removal with self-calibration

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Galaxy shear - cosmic microwave background (CMB) lensing convergence cross-correlations contain additional information on cosmology to auto-correlations. While being immune to certain systematic effects, they are affected by the galaxy intrinsic alignments (IA). This may be responsible for the reported low lensing amplitude of the galaxy shear $\times$ CMB convergence cross-correlations, compared to the standard Planck $\Lambda$CDM (cosmological constant and cold dark matter) cosmology prediction. In this work, we investigate how IA affects the Kilo-Degree Survey (KiDS) galaxy lensing shear - Planck CMB lensing convergence cross-correlation and compare it to previous treatments with or without IA taken into consideration. More specifically, we compare marginalization over IA parameters and the IA self-calibration (SC) method (with additional observables defined only from the source galaxies) and prove that SC can efficiently break the degeneracy between the CMB lensing amplitude $A_{\rm lens}$ and the IA amplitude $A_{\rm IA}$. We further investigate how different systematics affect the resulting $A_{\rm IA}$ and $A_{\rm lens}$, and validate our results with the MICE2 simulation. We find that by including the SC method to constrain IA, the information loss due to the degeneracy between CMB lensing and IA is strongly reduced. The best-fit values are $A_{\rm lens}=0.84^{+0.22}_{-0.22}$ and $A_{\rm IA}=0.60^{+1.03}_{-1.03}$, while different angular scale cuts can affect $A_{\rm lens}$ by $\sim10\%$. We show that appropriate treatment of the boost factor, cosmic magnification, and photometric redshift modeling is important for obtaining the correct IA and cosmological results.

  • Effects of galaxy intrinsic alignment on weak lensing peak statistics

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The galaxy intrinsic alignment (IA) is a dominant source of systematics in weak lensing (WL) studies. In this paper, by employing large simulations with semi-analytical galaxy formation, we investigate the IA effects on WL peak statistics. Different simulated source galaxy samples of different redshift distributions are constructed, where both WL shear and IA signals are included. Convergence reconstruction and peak statistics are then performed for these samples. Our results show that the IA effects on peak abundances mainly consist of two aspects. One is the additional contribution from IA to the shape noise. The other is from the satellite IA that can affect the peak signals from their host clusters significantly. The latter depends on the level of inclusion in a shear sample of the satellite galaxies of the clusters that contribute to WL peaks, and thus is sensitive to the redshift distribution of source galaxies. We pay particular attention to satellite IA and adjust it artificially in the simulations to analyze the dependence of the satellite IA impacts on its strength. This information can potentially be incorporated into the modeling of WL peak abundances, especially for high peaks physically originated from massive clusters of galaxies, and thus to mitigate the IA systematics on the cosmological constraints derived from WL peaks.

  • Void Lensing in Cubic Galileon Gravity

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Weak lensing studies via cosmic voids are a promising probe of Modified Gravity (MG). The Excess Surface mass Density (ESD) is widely used as a lensing statistics in weak lensing researches. In this paper we use the ray-tracing method to study the ESD around voids in simulations based on the Cubic Galileon (CG) gravity. With the compilation of N-body simulation and ray-tracing method, changes on the structure formation and deflection angle resulting from MG can both be considered, making the extraction of lensing signals more realistic. We find good agreements between the measurement and theoretical prediction of ESD for CG gravity. Meanwhile, the effect on the deflection angle is found to be incomparable to that on the structure formation in CG, indicating an equivalence between ESD (statistics) and the projection of 3D dark matter density field for this gravity. Finally, we demonstrate that it is impossible to distinguish CG and General Relativity in our simulation with an effective survey area $\sim1550deg^2$ and a galaxy number density of $10arcmin^{-2}$, implying that void lensing statistics may not be the optimal probe on testing CG gravity. The methodology employed in this paper that combines N-body simulation and ray-tracing method can be a robust way to measure the lensing signals from simulations based on the MGs, and especially on that who significantly modifies the deflection angle.

  • Dark Matter Halos in Interacting Dark Energy Models: Formation History, Density Profile, Spin and Shape

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The interacting dark energy (IDE) model, which considers the interaction between dark energy and dark matter, provides a natural mechanism to alleviate the coincidence problem and can also relieve the observational tensions under the $\Lambda$CDM model. Previous studies have put constraints on IDE models by observations of cosmic expansion history, cosmic microwave background and large-scale structures. However, these data are not yet enough to distinguish IDE models from $\Lambda$CDM effectively. Because the non-linear structure formation contains rich cosmological information, it can provide additional means to differentiate alternative models. In this paper, based on a set of $N$-body simulations for IDE models, we investigate the formation histories and properties of dark matter halos, and compare with their $\Lambda$CDM counterparts. For the model with dark matter decaying into dark energy and the parameters being the best-fit values from previous constraints, the structure formation is markedly slowed down, and the halos have systematically lower mass, looser internal structure, higher spin and anisotropy. This is inconsistent with the observed structure formation, and thus this model can be safely ruled out from the perspective of non-linear structure formation. Moreover, we find that the ratio of halo concentrations between IDE and $\Lambda$CDM counterparts depends sensitively on the interaction parameter and is independent of halo mass. This can act as a powerful probe to constrain IDE models. Our results concretely demonstrate that the interaction of the two dark components can affect the halo formation considerably, and therefore the constraints from non-linear structures are indispensable.