您选择的条件: Yu Li
  • Inflationary magnetogenesis of primordial magnetic fields with multiple vector fields

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In this paper, we discussed the multiple vector fields during the inflation era and the inflationary magnetogenesis with multiple vector fields. Instead of a single coupling function in single vector field models, the coupling matrix between vector fields and scalar field which drive the inflation is introduced. The dynamical equations for multiple vector fields are obtained and applied to the inflation era. We discussed three cases for the double-field model. In no mutual-coupling case, one can find that both electric and magnetic spectrum can be scale-invariant at the end of inflation, meanwhile, the strong coupling problem can be avoided. The effect of mutual-coupling between different vector fields is also discussed. We found that weak mutual-coupling can lead to the slightly blue spectrum of the magnetic field. On the other hand, in the strong mutual-coupling case, the scale-invariant magnetic spectrum can also be obtained but the energy density of electromagnetic fields either lead to the backreaction problem or is diluted by inflation.

  • Inflationary magnetogenesis of primordial magnetic fields with multiple vector fields

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In this paper, we discussed the multiple vector fields during the inflation era and the inflationary magnetogenesis with multiple vector fields. Instead of a single coupling function in single vector field models, the coupling matrix between vector fields and scalar field which drive the inflation is introduced. The dynamical equations for multiple vector fields are obtained and applied to the inflation era. We discussed three cases for the double-field model. In no mutual-coupling case, one can find that both electric and magnetic spectrum can be scale-invariant at the end of inflation, meanwhile, the strong coupling problem can be avoided. The effect of mutual-coupling between different vector fields is also discussed. We found that weak mutual-coupling can lead to the slightly blue spectrum of the magnetic field. On the other hand, in the strong mutual-coupling case, the scale-invariant magnetic spectrum can also be obtained but the energy density of electromagnetic fields either lead to the backreaction problem or is diluted by inflation.

  • Joint‐linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize

    分类: 生物学 >> 植物学 >> 植物细胞学与植物遗传学、植物形态学 提交时间: 2016-05-04

    摘要: Both insufficient and excessive male inflorescence size leads to a reduction in maize yield. Knowledge of the genetic architecture of male inflorescence is essential to achieve the optimum inflorescence size for maize breeding. In this study, we used approximately eight thousand inbreds, including both linkage populations and association populations, to dissect the genetic architecture of male inflorescence. The linkage populations include 25 families developed in the U.S. and 11 families developed in China. Each family contains approximately 200 recombinant inbred lines (RILs). The association populations include approximately 1000 diverse lines from the U.S. and China. All inbreds were genotyped by either sequencing or microarray. Inflorescence size was measured as the tassel primary branch number (TBN) and tassel length (TL). A total of 125 quantitative trait loci (QTLs) were identified (63 for TBN, 62 for TL) through linkage analyses. In addition, 965 quantitative trait nucleotides (QTNs) were identified through genomewide study (GWAS) at a bootstrap posterior probability (BPP) above a 5% threshold. These QTLs/QTNs include 24 known genes that were cloned using mutants, for example Ramosa3 (ra3), Thick tassel dwarf1 (td1), tasselseed2 (ts2), liguleless2 (lg2), ramosa1 (ra1), barren stalk1 (ba1), branch silkless1 (bd1) and tasselseed6 (ts6). The newly identified genes encode a zinc transporter (e.g. GRMZM5G838098 and GRMZM2G047762), the adapt in terminal region protein (e.g. GRMZM5G885628), O-methyl-transferase (e.g. GRMZM2G147491), helix-loop-helix (HLH) DNA-binding proteins (e.g. GRMZM2G414252 and GRMZM2G042895) and an SBP-box protein (e.g. GRMZM2G058588). These results provide extensive genetic information to dissect the genetic architecture of inflorescence size for the improvement of maize yield.