您选择的条件: E. Schisano
  • Supervised machine learning on Galactic filaments Revealing the filamentary structure of the Galactic interstellar medium

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Context. Filaments are ubiquitous in the Galaxy, and they host star formation. Detecting them in a reliable way is therefore key towards our understanding of the star formation process. Aims. We explore whether supervised machine learning can identify filamentary structures on the whole Galactic plane. Methods. We used two versions of UNet-based networks for image segmentation.We used H2 column density images of the Galactic plane obtained with Herschel Hi-GAL data as input data. We trained the UNet-based networks with skeletons (spine plus branches) of filaments that were extracted from these images, together with background and missing data masks that we produced. We tested eight training scenarios to determine the best scenario for our astrophysical purpose of classifying pixels as filaments. Results. The training of the UNets allows us to create a new image of the Galactic plane by segmentation in which pixels belonging to filamentary structures are identified. With this new method, we classify more pixels (more by a factor of 2 to 7, depending on the classification threshold used) as belonging to filaments than the spine plus branches structures we used as input. New structures are revealed, which are mainly low-contrast filaments that were not detected before.We use standard metrics to evaluate the performances of the different training scenarios. This allows us to demonstrate the robustness of the method and to determine an optimal threshold value that maximizes the recovery of the input labelled pixel classification. Conclusions. This proof-of-concept study shows that supervised machine learning can reveal filamentary structures that are present throughout the Galactic plane. The detection of these structures, including low-density and low-contrast structures that have never been seen before, offers important perspectives for the study of these filaments.

  • The Star Formation Rate of the Milky Way as seen by Herschel

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a new derivation of the Milky Way's current star formation rate (SFR) based on the data of the Hi-GAL Galactic plane survey. We estimate the distribution of the SFR across the Galactic plane from the star-forming clumps identified in the Hi-GAL survey and calculate the total SFR from the sum of their contributions. The estimate of the global SFR amounts to $2.0 \pm 0.7$~M$_{\odot}$~yr$^{-1}$, of which $1.7 \pm 0.6$~M$_{\odot}$~yr$^{-1}$ coming from clumps with reliable heliocentric distance assignment. This value is in general agreement with estimates found in the literature of last decades. The profile of SFR density averaged in Galactocentric rings is found to be qualitatively similar to others previously computed, with a peak corresponding to the Central Molecular Zone and another one around Galactocentric radius $R_\mathrm{gal} \sim 5$~kpc, followed by an exponential decrease as $\log(\Sigma_\mathrm{SFR}/[\mathrm{M}_\odot~\mathrm{yr}^{-1}~\mathrm{kpc}^{-2}])=a\,R_\mathrm{gal}/[\mathrm{kpc}]+b $, with $a=-0.28 \pm 0.01$. In this regard, the fraction of SFR produced within and outside the Solar circle is 84\% and 16\%, respectively; the fraction corresponding to the far outer Galaxy ($R_\mathrm{gal} > 13.5$~kpc) is only 1\%. We also find that, for $R_\mathrm{gal}>3$~kpc, our data follow a power law as a function of density, similarly to the Kennicutt-Schmidt relation. Finally, we compare the distribution of the SFR density across the face-on Galactic plane and those of median parameters, such as temperature, luminosity/mass ratio and bolometric temperature, describing the evolutionary stage of Hi-GAL clumps. We found no clear correlation between the SFR and the clump evolutionary stage.