Your conditions: 王清涛
  • Construction and Application of A Novel Abscisic Acid Electrochemical Immunosensor Based on Carboxylated Graphene-Sodium Alginate Nanocomposite

    Subjects: Agriculture, Forestry,Livestock & Aquatic Products Science >> Other Disciplines of Agriculture, Forestry,Livestock & Aquatic Products Science submitted time 2023-02-17 Cooperative journals: 《智慧农业(中英文)》

    Abstract: Abscisic acid (ABA) is an important plant hormone, which can control seed and bud dormancy, organ size control, senescence and death, and participate in both biological and abiotic stress, inhibit plant growth, and participate in plant disease resistance. In order to determine the content of ABA in plants quickly and accurately, a new type of ABA immunosensor was developed. To improve the detection performance of the sensor, the detection performance of the sensor was increased by modifying GR-COOH and SA on the electrode surface. The concentration of GR-COOH , SA, and ABA-Antibody were optimized, the optimal conditions for the three materials were 1.5 mg/ml, 1.25 mg/ml and 0.5 mg/ml. The immunosensor was constructed based on the electrode impedance changes (△Z ) due to the binding reaction of ABA antibody and antigen . It was found that the sensor showed linear relationship with ABA in the response range of 10 pmol/L~1 μmol/L, R2 was 0.99927, and the detection limit was about 10 pmol/L. The sensor also had good selectivity and stability. Using the electrochemical immunosensor, the content of ABA in navel orange leaf that have been successfully inoculated with citrus Huanglongbing by PCR was determined, and healthy plants were used as control. The test results showed that the impedance changes(△Z ) of healthy leaves and diseased leaves were 72 and 823, respectively, which indicated that the level of ABA in the infected plants increased significantly. The sensor provides a tool for the detection of plant hormone levels under disease stress. The results showed that the content of ABA increased in the leaves of navel orange infected by citrus Huanglongbing, which indicated that ABA played an important role in plant disease resistance. Furthermore, the changes of gene expression of key enzymes CitZEP in ABA synthesis pathway were studied, The results showed that the expression of CitZEP increased in plants infected with Huanglongbing disease, and the results were consistent with the detection results of the sensor, which indicated that the sensor had good practicability.

  • 基于 FAREAST 模型的青海云杉中-幼龄林生物量 碳沿海拔梯度分布特征

    Subjects: Biology >> Ecology submitted time 2021-01-07 Cooperative journals: 《干旱区地理》

    Abstract: 为预测未来青海云杉在不同海拔梯度上的分布范围,基于 FAREAST 模型,对祁连山西部、 中部和东部 3 个站点的青海云衫(Picea crassifolia)中-幼龄林(0~60 a)生物量碳的海拔分布特征进 行模拟。结果表明:(1)在同一站点,青海云杉幼苗幼树生物量碳在中间海拔分布最多,集中在海 拔 2 800~3 100 m 之间,此范围以外,生物量碳随之减少。(2)不同站点比较,青海云杉幼苗幼树平均生物量碳在祁连山中部最高,达到 27.48 ± 5.51 t·C·hm-2,其次为东部的 24.56 ± 3.50 t·C·hm-2 和西部的 23.80 ± 2.07 t·C·hm-2。(3)青海云杉幼苗幼树分布的海拔范围约在 2 500~3 400 m 之间,但 不同站点间存在差异。模拟得出,祁连山区青海云杉幼苗幼树生物量碳分布存在最佳海拔区间 2 800~3 100 m,高于或低于该区间时,青海云杉的生长和更新过程将会受到限制。祁连山中部青 海云杉幼苗幼树生物量碳高于东部和西部,表明中部是青海云杉生长和潜在分布的最佳区域,导 致东、西部区域更新较差的原因可能是由于东部受人类活动的影响更加频繁,而西部山区则可能 更易受干旱胁迫的影响。

  • 黑河上游天涝池流域典型灌木生态参数研究

    Subjects: Geosciences >> Hydrology submitted time 2018-10-23 Cooperative journals: 《干旱区地理》

    Abstract: 祁连山自然保护区是河西地区重要的水源涵养区,而灌丛作为祁连山主要植被类型之一,对该区水源涵养功能具有举足轻重的作用。本文以黑河上游天涝池流域两种典型亚高山灌木为研究对象,基于2014 、2015 年野外观测和ArcGIS10.1分析功能,获得灌木生长季期间生态参数(叶面积、叶面积指数和比叶面积)的变化;同时,结合分辨率为0.5m×0.5m的LiDAR数据和Geoeye-1影像数据,估算研究区灌木叶面积指数的空间分布。研究结果表明:灌木在生长季期间比叶面积值在一定范围内波动;叶面积、叶面积指数变化较大。其中,在6月、7月份增加最明显,8月份趋于稳定,9月份叶片开始凋落。其次,随海拔梯度水热条件的不同,流域灌木叶面积指数空间异质性较大,以海拔3 400m为节点,在3 200~3 400 m 海拔带叶面积指数呈递增趋势,在3 400~3 750 叶面积指数呈递减趋势。