Your conditions: Zhan-Wen Han
  • LAMOST medium-resolution spectroscopic survey of binarity and exotic star (LAMOST-MRS-B): Observation strategy and target selection

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: LAMOST-MRS-B is one of the sub-surveys of LAMOST medium-resolution (R~7500) spectroscopic survey. It aims at studying the statistical properties (e.g., binary fraction, orbital period distribution, mass ratio distribution) of binary stars and exotic stars. We intend to observe about 30000 stars (10 mag <= G <= 14.5 mag) with at least 10 visits in five years. We first planned to observe 25 plates around the galactic plane in 2018. Then the plates were reduced to 12 in 2019 because of the limitation of observation. At the same time, two new plates located at the high galactic latitude were added to explore binary properties influenced by the different environments. In this survey project, we set the identified exotic and low-metallicity stars with the highest observation priorities. For the rest of the selected stars, we gave higher priority to the relatively brighter stars in order to obtain high-quality spectra as many as possible. Spectra of 49129 stars have been obtained in LAMOST-MRS-B field and released in DR8, of which 28828 and 3375 stars have been visited more than twice and ten times with SNR >= 10, respectively. Most of the sources are B-, A-, and F-type stars with 0.6 < [Fe/H] < 0.4 dex. We also obtain 347 identified variable and exotic stars and about 250 stars with [Fe/H] < 1 dex. We measure radial velocities (RVs) by using 892233 spectra of the stars. The uncertainties of RV achieve about 1 km/s and 10 km/s1 for 95% of late- and early-type stars, respectively. The datasets presented in this paper are available at http://www.doi.org/10.57760/sciencedb.j00113.00035.

  • LAMOST medium-resolution spectroscopic survey of binarity and exotic star (LAMOST-MRS-B): Observation strategy and target selection

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: LAMOST-MRS-B is one of the sub-surveys of LAMOST medium-resolution (R~7500) spectroscopic survey. It aims at studying the statistical properties (e.g., binary fraction, orbital period distribution, mass ratio distribution) of binary stars and exotic stars. We intend to observe about 30000 stars (10 mag <= G <= 14.5 mag) with at least 10 visits in five years. We first planned to observe 25 plates around the galactic plane in 2018. Then the plates were reduced to 12 in 2019 because of the limitation of observation. At the same time, two new plates located at the high galactic latitude were added to explore binary properties influenced by the different environments. In this survey project, we set the identified exotic and low-metallicity stars with the highest observation priorities. For the rest of the selected stars, we gave higher priority to the relatively brighter stars in order to obtain high-quality spectra as many as possible. Spectra of 49129 stars have been obtained in LAMOST-MRS-B field and released in DR8, of which 28828 and 3375 stars have been visited more than twice and ten times with SNR >= 10, respectively. Most of the sources are B-, A-, and F-type stars with 0.6 < [Fe/H] < 0.4 dex. We also obtain 347 identified variable and exotic stars and about 250 stars with [Fe/H] < 1 dex. We measure radial velocities (RVs) by using 892233 spectra of the stars. The uncertainties of RV achieve about 1 km/s and 10 km/s1 for 95% of late- and early-type stars, respectively. The datasets presented in this paper are available at http://www.doi.org/10.57760/sciencedb.j00113.00035.

  • Type Ia supernovae in NS+He star systems and the isolated mildly recycled pulsars

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: Type Ia supernovae (SNe Ia) are successful cosmological distance indicators and important element factories in the chemical evolution of galaxies. They are generally thought to originate from thermonuclear explosions of carbon-oxygen white dwarfs in close binaries. However, the observed diversity among SNe Ia implies that they have different progenitor models. In this article, we performed the long-term evolution of NS+He star binaries with different initial He star masses ($M_{\rm He}^{\rm i}$) and orbital periods ($P_{\rm orb}^{\rm i}$) for the first time, in which the He star companions can explode as SNe Ia eventually. Our simulations indicate that after the He stars develop highly degenerate oxygen-neon (ONe) cores with masses near the Chandrasekhar limit, explosive oxygen burning can be triggered due to the ignition of central residual carbon. According to these calculations, we obtained an initial parameter space for the production of SNe Ia in the $\rm log\,$$P^{\rm i}_{\rm orb}-M^{\rm i}_{\rm He}$ plane. Meanwhile, we found that isolated mildly recycled pulsars can be formed after He stars explode as SNe Ia in NS+He star binaries, in which the isolated pulsars have minimum spin periods ($P_{\rm spin}^{\rm min}$) of $\sim 30-110\rm\,ms$ and final orbital velocities of $\sim \rm 60-360\,km\,s^{-1}$, corresponding to initial orbital periods of $0.07-10\rm\,d$. Our work suggests that the NS+He star channel may contribute to the formation of isolated mildly recycled pulsars with velocity $\rm \lesssim 360\,km\,s^{-1}$ in observations, and such isolated pulsars should locate in the region of pulsars with massive WD companions in the $P_{\rm spin}-\dot P_{\rm spin}$ diagram.

  • Type Ia supernovae in NS+He star systems and the isolated mildly recycled pulsars

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: Type Ia supernovae (SNe Ia) are successful cosmological distance indicators and important element factories in the chemical evolution of galaxies. They are generally thought to originate from thermonuclear explosions of carbon-oxygen white dwarfs in close binaries. However, the observed diversity among SNe Ia implies that they have different progenitor models. In this article, we performed the long-term evolution of NS+He star binaries with different initial He star masses ($M_{\rm He}^{\rm i}$) and orbital periods ($P_{\rm orb}^{\rm i}$) for the first time, in which the He star companions can explode as SNe Ia eventually. Our simulations indicate that after the He stars develop highly degenerate oxygen-neon (ONe) cores with masses near the Chandrasekhar limit, explosive oxygen burning can be triggered due to the ignition of central residual carbon. According to these calculations, we obtained an initial parameter space for the production of SNe Ia in the $\rm log\,$$P^{\rm i}_{\rm orb}-M^{\rm i}_{\rm He}$ plane. Meanwhile, we found that isolated mildly recycled pulsars can be formed after He stars explode as SNe Ia in NS+He star binaries, in which the isolated pulsars have minimum spin periods ($P_{\rm spin}^{\rm min}$) of $\sim 30-110\rm\,ms$ and final orbital velocities of $\sim \rm 60-360\,km\,s^{-1}$, corresponding to initial orbital periods of $0.07-10\rm\,d$. Our work suggests that the NS+He star channel may contribute to the formation of isolated mildly recycled pulsars with velocity $\rm \lesssim 360\,km\,s^{-1}$ in observations, and such isolated pulsars should locate in the region of pulsars with massive WD companions in the $P_{\rm spin}-\dot P_{\rm spin}$ diagram.