Your conditions: 宋显伟
  • Application and Review of Biotechnology in Promoting Protective Utilization of Black Soil

    Subjects: Other Disciplines >> Synthetic discipline submitted time 2023-03-28 Cooperative journals: 《中国科学院院刊》

    Abstract: In the past 60 years, the highly-intensive and unreasonable farming of the black soil in Northeast China has brought a series of adverse consequences such as the reduction of organic matter, the serious imbalance of carbon and nitrogen, and the instability of microbiota, which seriously threaten China’s food security and agricultural sustainable development. The decrease of organic matter content in black soil is the core issue in the degradation of black soil. Organisms are the source of all organic matter, and the dynamic balance of organic matter driven by organisms is the basis for maintaining the stability of farmland ecosystem and soil quality. However, the limitation of hydrothermal resources in Northeast China makes it difficult to realize the transformation of organism-driven soil organic matter, which restricts the improvement of black soil quality and the development of conservation tillage technology. Recently, the Chinese Academy of Sciences has launched the strategic priority program “Scientific and Technological Innovation Project for Black Soil Protection and Utilization (Black Soil Granary)”, and set up the key task of “modern biological technology for improving the productivity and quality of black soil”. Focusing on majorm scientific issues including the mechanism of soil organic matter dynamic balance driven by organisms such as green manure, and the biological mechanism of low-temperature decomposition of straw, the key task aims to develop revolutionary and disruptive biotechnologies to solve the bottleneck of transformation technology of black soil organic matter, hence to promote the benign balance of material circulations and ecological functions. This will provide important theoretical and key technical support for the improvement of productivity and quality of black soil.

  • Approaches and Research Progresses of Marginal Land Productivity Expansion and Ecological Benefit Improvement in China

    Subjects: Other Disciplines >> Synthetic discipline submitted time 2023-03-28 Cooperative journals: 《中国科学院院刊》

    Abstract: Marginal land refers to the land with low agricultural productivity and economic benefit and fragile ecology due to the prominent limitation of soil barrier, strong restriction of water and heat resources as well as harsh topographic conditions. In China, the existing marginal land is about 1.17 billion mu (15 mu is equal to 1 ha), which is the most important resource of strategic emergency to deal with the cultivated land gap of 700 million mu. Marginal land storage is a major strategy for national food security. It has become a new international research trend to increase the productivity and ecological functions of marginal land by modulating the interaction between plant and soil microbial. This includes breeding high stress-tolerant plants, screening and application of plant growth promotion rhizobacteria (PGPR) to promote plant growth on marginal land, and strengthening soil microbial functions to improve soil quality and health. In view of the marginal land productivity expansion and ecological benefit improvement, it is necessary to formulate the overall action plans based on the principles of ecological priority and green development. We should carry out the marginal land R & D project with the idea of “plant first, soil-improvement as the base, water security, microbial control, and the integration of plant-soil-microbial ecological system”. (1) We should build a national database of marginal land and formulate the protection and management zoning plan. (2) We should develop four aspects of basic theory research namely, stress-tolerant plants breeding and its adaptive mechanism, efficient utilization of water and fertilize, soil obstacle factor reduction and biological networks induction/acclimatization, and the interaction between plant and microbial.(3) Focusing on coastal saline-alkali land in north and east China, soda alkali-saline land in northeast China, saline-alkali land in northwest inland, yellow spongy soils slope on the loess plateau, red soil and purple soil slope land in south hilly region, we should build different types of ecological farmland by integrating various technologies and theories. This will promote the protection and sustainable utilization of marginal land resources, and support the timely launch of the efficient use of contiguous marginal land to achieve the goal of increasing productivity by adding 700 million mu of medium-high grade arable land. This will be also helpful to ensure the implementation of the strategy of “storing grain in land and technology” and rural vitalization, and the construction of ecological civilization in China’s ecologically fragile areas.