Submitted Date
Subjects
Authors
Institution
Your conditions: Jun Xu
  • Solar image reconstruction method under atmospheric turbulence at Fuxian Lake Solar Observatory

    Subjects: Astronomy >> Astronomical Instruments and Techniques submitted time 2024-04-18 Cooperative journals: 《天文技术与仪器(英文)》

    Abstract: Strong atmospheric turbulence reduces astronomical seeing, causing speckle images acquired by groundbased solar telescopes to become blurred and distorted. Severe distortion in speckle images impedes image phase deviation in the speckle masking reconstruction method, leading to the appearance of spurious imaging artifacts. Relying only on linear image degradation principles to reconstruct solar images is insufficient. To solve this problem, we propose the multiframe blind deconvolution combined with non-rigid alignment (MFBD-CNRA) method for solar image reconstruction. We consider image distortion caused by atmospheric turbulence and use non-rigid alignment to correct pixel-level distortion, thereby achieving nonlinear constraints to complement image intensity changes. After creating the corrected speckle image, we use the linear method to solve the wavefront phase, obtaining the target image. We verify the effectiveness of our method results, compared with others, using solar observation data from the 1 m new vacuum solar telescope (NVST). This new method successfully reconstructs high-resolution images of solar observations with a Fried parameter r0 of approximately 10 cm, and enhances images at high frequency. When r0 is approximately 5 cm, the new method is even more effective. It reconstructs the edges of solar graining and sunspots, and is greatly enhanced at mid and high frequency compared with other methods. Comparisons confirm the effectiveness of this method, with respect to both nonlinear and linear constraints in solar image reconstruction. This provides a suitable solution for image reconstruction in ground-based solar observations under strong atmospheric turbulence.

  • Multiwavelength Analysis of a Nearby Heavily Obscured AGN in NGC 449

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: We presented the multiwavelength analysis of a heavily obscured active galactic nucleus (AGN) in NGC 449. We first constructed a broadband X-ray spectrum using the latest NuSTAR and XMM-Newton data. Its column density ($\simeq 10^{24} \rm{cm}^{-2}$) and photon index ($\Gamma\simeq 2.4$) were reliably obtained by analyzing the broadband X-ray spectrum. However, the scattering fraction and the intrinsic X-ray luminosity could not be well constrained. Combined with the information obtained from the mid-infrared (mid-IR) spectrum and spectral energy distribution (SED) fitting, we derived its intrinsic X-ray luminosity ($\simeq 8.54\times 10^{42} \ \rm{erg\ s}^{-1}$) and scattering fraction ($f_{\rm{scat}}\simeq 0.26\%$). In addition, we also derived the following results: (1). The mass accretion rate of central AGN is about $2.54 \times 10^{-2} \rm{M}_\odot\ \rm{yr}^{-1}$, and the Eddington ratio is $8.39\times 10^{-2}$; (2). The torus of this AGN has a high gas-to-dust ratio ($N_{\rm H}/A_{\rm V}=8.40\times 10^{22}\ \rm{cm}^{-2}\ \rm{mag}^{-1}$); (3). The host galaxy and the central AGN are both in the early stage of co-evolution.

  • Multiwavelength Analysis of a Nearby Heavily Obscured AGN in NGC 449

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: We presented the multiwavelength analysis of a heavily obscured active galactic nucleus (AGN) in NGC 449. We first constructed a broadband X-ray spectrum using the latest NuSTAR and XMM-Newton data. Its column density ($\simeq 10^{24} \rm{cm}^{-2}$) and photon index ($\Gamma\simeq 2.4$) were reliably obtained by analyzing the broadband X-ray spectrum. However, the scattering fraction and the intrinsic X-ray luminosity could not be well constrained. Combined with the information obtained from the mid-infrared (mid-IR) spectrum and spectral energy distribution (SED) fitting, we derived its intrinsic X-ray luminosity ($\simeq 8.54\times 10^{42} \ \rm{erg\ s}^{-1}$) and scattering fraction ($f_{\rm{scat}}\simeq 0.26\%$). In addition, we also derived the following results: (1). The mass accretion rate of central AGN is about $2.54 \times 10^{-2} \rm{M}_\odot\ \rm{yr}^{-1}$, and the Eddington ratio is $8.39\times 10^{-2}$; (2). The torus of this AGN has a high gas-to-dust ratio ($N_{\rm H}/A_{\rm V}=8.40\times 10^{22}\ \rm{cm}^{-2}\ \rm{mag}^{-1}$); (3). The host galaxy and the central AGN are both in the early stage of co-evolution.

  • Peering into the Milky Way by FAST: III. Magnetic fields in the Galactic halo and farther spiral arms revealed by the Faraday effect of faint pulsars

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is the most sensitive radio telescope for pulsar observations. We make polarimetric measurements of a large number of faint and distant pulsars using the FAST. We present the new measurements of Faraday rotation for 134 faint pulsars in the Galactic halo. Significant improvements are also made for some basic pulsar parameters for 15 of them. We analyse the newly determined rotation measures (RMs) for the Galactic magnetic fields by using these 134 halo pulsars, together with previously available RMs for pulsars and extragalactic radio sources and also the newly determined RMs for another 311 faint pulsars which are either newly discovered in the project of the Galactic Plane Pulsar Snapshot (GPPS) survey or previously known pulsars without RMs. The RM tomographic analysis in the first Galactic quadrant gives roughly the same field strength of around 2~$\mu$G for the large-scale toroidal halo magnetic fields. The scale height of the halo magnetic fields is found to be at least 2.7$\pm$0.3~kpc. The RM differentiation of a large number of pulsars in the Galactic disk in the Galactic longitude range of $26^{\circ}展开 -->

  • Peering into the Milky Way by FAST: III. Magnetic fields in the Galactic halo and farther spiral arms revealed by the Faraday effect of faint pulsars

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is the most sensitive radio telescope for pulsar observations. We make polarimetric measurements of a large number of faint and distant pulsars using the FAST. We present the new measurements of Faraday rotation for 134 faint pulsars in the Galactic halo. Significant improvements are also made for some basic pulsar parameters for 15 of them. We analyse the newly determined rotation measures (RMs) for the Galactic magnetic fields by using these 134 halo pulsars, together with previously available RMs for pulsars and extragalactic radio sources and also the newly determined RMs for another 311 faint pulsars which are either newly discovered in the project of the Galactic Plane Pulsar Snapshot (GPPS) survey or previously known pulsars without RMs. The RM tomographic analysis in the first Galactic quadrant gives roughly the same field strength of around 2~$\mu$G for the large-scale toroidal halo magnetic fields. The scale height of the halo magnetic fields is found to be at least 2.7$\pm$0.3~kpc. The RM differentiation of a large number of pulsars in the Galactic disk in the Galactic longitude range of $26^{\circ}展开 -->

  • Clinical and Biochemical Indexes from 2019-nCoV infected patients linked to viral loads and lung injury

    Subjects: Biology >> Biochemistry submitted time 2020-02-08

    Abstract: The outbreak of the 2019-nCoV infection began in December 2019 in Wuhan, Hubei province, and rapidly spread to many provinces in China as well as other countries. Here we report the epidemiological, clinical, laboratory, and radiological characteristics, as well as potential biomarkers for predicting disease severity in 2019-nCoV-infected patients in Shenzhen, China. All 12 cases of the 2019-nCoV-infected patients developed pneumonia and half of them developed acute respiratory distress syndrome (ARDS). The most common laboratory abnormalities were hypoalbuminemia (ALB), lymphopenia, decreased percentage of lymphocytes (LYM) and neutrophils (NEU), elevated C-reactive protein (CRP) and lactate dehydrogenase (LDH), and decreased CD8 count. The viral load of 2019-nCoV detected from patient respiratory tracts was positively linked to lung disease severity. ALB, LYM, LYM (%), LDH, NEU (%) and CRP were highly correlated to the acute lung injury. Age, viral load, lung injury score, and blood biochemistry indexes, ALB, CRP, LDH, LYM (%), LYM, and NEU (%), may be predictors of disease severity. Moreover, the Angiotensin II level in the plasma sample from 2019-nCoV infected patients was markedly elevated and linearly associated to viral load and lung injury. Our results suggest a number of potential diagnosis biomarkers and angiotensin receptor blocker (ARB) drugs for potential repurposing treatment of 2019-nCoV infection.