• Study of the response of 10B-doped MCP to wide-energy range neutrons from eV to MeV

    分类: 核科学技术 >> 核科学技术其他学科 提交时间: 2024-05-31

    摘要: Neutron-sensitive microchannel plates (nMCPs) have applications in neutron detection, including energy spectrum measurements, neutron-induced cross-sections, and neutron imaging. 10B-doped MCPs (B-MCPs) have attracted significant attention owing to their potential for exhibiting a high neutron detection efficiency over a large neutron energy range. Good spatial and temporal resolutions are useful for neutron energy-resolved imaging. However, their practical applications still face many technical challenges. In this study, a B-MCP with 10 mol% 10B was tested for its response to wide-energy neutrons from eV to MeV at the Back-n white neutron source at the China Spallation Neutron Source. The neutron detection efficiency was calibrated at 1 eV, which is approximately 300 times that of an ordinary MCP and indicates the success of 10B doping. The factors that caused the reduction in the detection efficiency were simulated and discussed. The neutron energy spectrum obtained using B-MCP was compared with that obtained by other measurement methods, and showed very good consistency for neutron energies below tens of keV. The response is more complicated at higher neutron energy, at which point the elastic and non-elastic reactions of all nuclides of B-MCP gradually become dominant. This is beneficial for the detection of neutrons, as it compensates for the detection efficiency of B-MCP for high-energy neutrons.

  • 10B-doped MCP detector developed for neutron resonance imaging at Back-n white neutron source

    分类: 核科学技术 >> 辐射物理与技术 提交时间: 2024-05-31

    摘要: Neutron resonance imaging (NRI) has recently emerged as an appealing technique for neutron radiography. Its complexity surpasses that of conventional transmission imaging, as it requires a high demand for both a neutron source and detector. Consequently, the progression of NRI technology has been sluggish since its inception in the 1980s, particularly considering the limited studies analyzing the neutron energy range above keV. The white neutron source (Back-n) at the China Spallation Neutron Source (CSNS) provides favorable beam conditions for the development of the NRI technique over a wide neutron energy range from eV to MeV. Neutron-sensitive microchannel plates (MCP) have emerged as a cutting-edge tool in the field of neutron detection owing to their high temporal and spatial resolutions, high detection efficiency, and low noise. In this study, we report the development of a 10B-doped MCP detector, along with its associated electronics, data processing system, and NRI experiments at the Back-n. Individual heavy elements such as gold, silver, tungsten, and indium can be easily identified in the transmission images by their characteristic resonance peaks in the 1-100 eV energy range; the more difficult medium-weight elements such as iron, copper, and aluminum with resonance peaks in the 1-100 keV energy range can also be identified. In particular, results in the neutron energy range of dozens of keV (Aluminum) are reported here for the first time.