• Research Progress of Apple Production Intelligent Chassis and Weeding and Harvesting Equipment Technology

    Subjects: Agriculture, Forestry,Livestock & Aquatic Products Science >> Other Disciplines of Agriculture, Forestry,Livestock & Aquatic Products Science submitted time 2023-02-17 Cooperative journals: 《智慧农业(中英文)》

    Abstract: As a pillar industry of economic development in the main apple-producing areas, apple industry has made important contributions to the increase of local farmers' income. With the transformation and upgrading of apple industry, the mechanization and intelligence level would be directly related to economic benefits. To promote the research of apple production intelligent technology and the development of intelligent equipment, in this paper, the current level of mechanization in each step of apple production was first introduced. Then, the main characteristics of the main apple orchard machinery, such as power chassis, weeding machinery, and harvesting equipment, were demonstrated. The application progress of automatic leveling and control, automatic navigation, automatic obstacle avoidance, weed identification, weed removal, apple identification, apple positioning, apple separation, and other technologies in intelligent power chassis, intelligent weeding machines, and apple harvesting robots, were summarized. The basic principles and characteristics of the above three key technologies of intelligent equipment were expounded in combination with different application environments. Intelligent control is the key technology for the intelligentization of orchard power chassis. The post of chassis adaptive control technology and autonomous navigation technology were discussed. In addition, a chassis intelligent perception and intelligent decision-making system should be established. Orchard chassis safe, accurate, efficient, and stable driving and operation is the future development trend of orchard intelligent chassis. The lack of robust weed sensing technology is the main limitation to the commercial development of a robotic weed control system. To improve the level of weed detection and weeding, machine vision and multi-sensor fusion methods have been proposed to solve the practical problems, such as illumination, overlapping leaves, occlusion, and classi fi er or network structure optimization. Robotic apple harvesting has proven to be a highly challenging task due to environmental complexities, sensor reliability, and robot stability. To improve the accuracy and efficiency of harvest mechanization applications in apples, apple quick identification under complex scenes, apple picking path planning, and materials and structure of manipulator for apple picking must all be optimized accordingly. Finally, the challenges of intelligent equipment technologies in apple production were analyzed, and the developing suggestions were put forward. This research can provide references and ideas for the advancement of intelligent technology research in apple production and the research and development of intelligent equipment.

  • Research Progress and Technology Trend of Intelligent Morning of Dairy Cow Motion Behavior

    Subjects: Agriculture, Forestry,Livestock & Aquatic Products Science >> Other Disciplines of Agriculture, Forestry,Livestock & Aquatic Products Science submitted time 2023-02-17 Cooperative journals: 《智慧农业(中英文)》

    Abstract: The motion behavior of dairy cows contains much of health information. The application of information and intelligent technology will help farms grasp the health status of dairy cows in time and improve breeding efficiency. In this paper, the development trend of intelligent morning technology of cow's motion behavior was mainly analyzed. Firstly, on the basis of expounding the significance of monitoring the basic motion (lying, walking, standing), oestrus, breathing, rumination and limping of dairy cows, the necessity of behavior monitoring of dairy cows was introduced. Secondly, the current research status was summarized from contact monitoring methods and non-contact monitoring methods in chronological order. The principle and achievements of related research were introduced in detail and classified. It is found that the current contact monitoring methods mainly rely on acceleration sensors, pedometers and pressure sensors, while the non-contact monitoring methods mainly rely on video images, including traditional video image analysis and video image analysis based on deep learning. Then, the development status of cow behavior monitoring industry was analyzed, and the main businesses and mainstream products of representative livestock farm automation equipment suppliers were listed. Industry giants, such as Afimilk and DeLaval, as well as their products such as intelligent collar (AfiCollar), pedometer (AfiActll Tag) and automatic milking equipment (VMS™ V300) were introduced. After that, the problems and challenges of current contact and non-contact monitoring methods of dairy cow motion behavior were put forward. The current intelligent monitoring methods of dairy cows' motion behavior are mainly wearable devices, but they have some disadvantages, such as bring stress to dairy cows and are difficult to install and maintain. Although the non-contact monitoring methods based on video image analysis technology does not bring stress to dairy cows and is low cost, the relevant research is still in its infancy , and there is still a certain distance from commercial use. Finally, the future development directions of relevant key technologies were prospected, including miniaturization and integration of wearable monitoring equipment, improving the robustness of computer vision technology, multi-target monitoring with limited equipment and promoting technology industrialization.

  • Recent Advances on Application of Radio Frequency Heating in the Research of Post-Harvest Grain Storage and Processing

    Subjects: Agriculture, Forestry,Livestock & Aquatic Products Science >> Other Disciplines of Agriculture, Forestry,Livestock & Aquatic Products Science submitted time 2023-02-17 Cooperative journals: 《智慧农业(中英文)》

    Abstract: The storage and processing of grain are the basis for economic and social stability and development. As a new heating treatment technology based on electromagnetic wave, radio frequency technology has the characteristics of large penetration depth, rapid heating, volumetric heating and no chemical residue. It has been widely used in post-harvest research of grain and has potential industrial application prospects in some fields. To expound the research progress of the application of radio frequency heating technology in grain storage and processing, this review briefly described the basic principle and characteristics of radio frequency heating as well as the current commercial radio frequency heating system including free oscillation type and 50 Ω type. The basic research of radio frequency heating in grain storage and processing was summarized from three aspects: Dielectric properties of grain and pests, heat resistance of stored grain pests and heating uniformity of sample. The dielectric properties refer to the interaction between materials and electromagnetic waves in an electromagnetic field and determines the absorption and conversion of electromagnetic energy. It can predict the heating characteristics of grain and provide basic data for computer simulation to optimize process during radio frequency treatment. The heat resistance data of pests are necessary for the establishment and optimization of dis-infestations technology, so the kinetic date of thermal death of common stored grain pests were reported in this review. As a main hinder in the commercial application of radio frequency treatments, the heating uniformity has significant effect on heat treatment quality and results in potential food safety problems. The major factors causing heating non-uniformity are the non-uniformity of electromagnetic field, runaway heating and the sample shape effect. The improvement methods of heating uniformity were summarized from three aspects in this article including changing the electromagnetic field distribution, sample position, and optimizing the radio frequency working parameters. Based on the above basic research of radio frequency technology and combining with the practical problems in grain storage and processing, the applications of radio frequency heating in the fields of dis-infestations, sterilizing, enzyme inactivation and drying were also summarized. Finally, some suggestions on the application of this technology in grain storage and processing and future research directions were proposed. This review may play a certain guiding role for the application of radio frequency technology in grain storage and processing.

  • CFD Modeling and Experiment of Airflow at the Air Outlet of Orchard Air-Assisted Sprayer

    Subjects: Agriculture, Forestry,Livestock & Aquatic Products Science >> Other Disciplines of Agriculture, Forestry,Livestock & Aquatic Products Science submitted time 2023-02-17 Cooperative journals: 《智慧农业(中英文)》

    Abstract: The tower-type sprayer produces swirling and irregular vertical airstream. The complex swirling results in airflow asymmetry between sides of the sprayer, and the vertical air velocity profile can be unpredictable when the rotational speed of the fan changes. The spray deposition is directly linked to the airflow pattern obtained from the sprayers. In order to study airflow field of this type of air-assisted sprayer, a CFD (Computational Fluid Dynamics) model for the tower-type sprayer was developed. A boundary condition setting method of UDF (User-Defined Function) sectional 3D air velocity was proposed. And the influences of turbulence models and the size of computational domain on CFD airflow simulation were studied. Using Fluent software, three different CFD models were established. The Model 1 took the average air velocity of 11 regions as the velocity inlet. The Model 2 used UDF segmented three-dimension air velocity line as the boundary condition. In order to further study the influence of the computational domain size on simulation, the Model 3 with a smaller computational domain was established. The turbulence model based on reynolds-averaged navier-stokes (RANS) control equation was used to calculate the airflow field in all models. In order to verify the reliability of the model, a three-dimensional measurement system of airflow field was designed, which was used for accurate and fast velocity measurement. The results showed that the Standard k-ε turbulence model, Realizable k-ε turbulence model, BSL k-w turbulence model, SST k-w turbulence model were suitable, and the Standard k-ε turbulence model was the best one. The CFD boundary condition setting method of UDF sectional three-dimension air velocity could improve the accuracy of simulation, and reduce the calculation complexity. With the same settings of other parameters, the performance of the CFD model with larger scale calculation domain was slightly better than that with smaller computational domain. The size of computational domain should be set to the appropriate extent, considering the calculation capacity and practical requirements of modelling. The research results could provide an important reference for CFD modeling of spray airflow field.

  • Improved AODV Routing Protocol for Multi-Robot Communication in Orchard

    Subjects: Agriculture, Forestry,Livestock & Aquatic Products Science >> Other Disciplines of Agriculture, Forestry,Livestock & Aquatic Products Science submitted time 2023-02-17 Cooperative journals: 《智慧农业(中英文)》

    Abstract: To satisfy the communication needs of multiple robots working in orchards, an improved Ad Hoc on-demand distance vector routing protocol based on signal strength threshold and priority nodes (AODV-SP), and the prediction model of Wi-Fi signal reception in peach orchards, was proposed in this study. Different from the traditional AODV protocol, AODV-SP utilizes the idea of priority nodes and strength thresholds to construct a discovery routing algorithm and a selection routing algorithm by seeking priority nodes and calculating the maximum strength threshold between nodes, respectively. The discovery routing message and selection routing message of the AODV-SP protocol were designed according to the discovery routing and selection routing algorithms. To verify the performance of the AODV-SP protocol, the performance of the protocol with different maximum movement speeds of nodes was analyzed by using NS2 simulation software and the performance was compared with the traditional AODV protocol. The simulation results showed that the average end-to-end delay, route initiation frequency, and route overhead of AODV-SP protocol with the introduction of priority node and path signal strength thresholds were smaller than those of the traditional AODV protocol, and the packet delivery rate improved significantly compared with that of AODV protocol. Among them, when the maximum node movement speed was 5 m/s, the route initiation frequency and route overhead of AODV-SP protocol reduced by 3.65% and 7.09%, respectively, compared with AODV protocol. When the maximum node movement speed was 8 m/s, the packet delivery rate of AODV-SP protocol improved by 0.59% and the average end-to-end delay reduced by 13.09%. To further verify the simulation results of AODV-SP making AODV-SP protocol applicable to a multirobot wireless communication system and ensure the normal operation of multi-robot wireless communication in orchards, a physical platform for multi-robot wireless communication was built in a laboratory environment, and software was designed to enable the physical platform to communicate properly under the AODV-SP protocol. And the physical platform for multi-robot wireless communication using the AODV-SP protocol was tested under static and dynamic conditions, respectively. The experiment results showed that, under static condition, when distance between nodes was less than or equal to 25 m, the packet loss rate of the robot was 0; when distance between nodes was 100 m, tthe packet loss rate of the robot was 21.01%, and the following robots could maintain the chain topology with the leader robot in dynamic conditions. Simulation and physical platform experiments results showed that the AODV-SP protocol could be used for the construction of multi-robot communication systems in orchard.