分类: 地球科学 >> 大气科学 提交时间: 2025-04-14 合作期刊: 《干旱区科学》
摘要: Precipitation isotopes (δ18O and δ2H) are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas, and are essential to the study of the regional hydrological cycle. The deuterium excess (d-excess) indicates deviation in isotope fractionation during evaporation and can trace water vapor sources. This study analyzed 443 precipitation samples collected from the Gannan Plateau, China in 2022 to assess precipitation isotope variations and their driving factors. Water vapor sources were evaluated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT), Concentration Weighted Trajectory (CWT), and Potential Source Contribution Factor (PSCF) models. Results showed that precipitation isotope values showed significant spatial and temporal variations on the Gannan Plateau. Temporally, precipitation isotope values peaked in June (when evaporation dominated) and minimized in March (depletion effect of air masses in the westerly wind belt). Spatially, the isotope values showed a distribution pattern of "high in the east and low in the west", which was mainly regulated by the differences in altitude and local meteorological conditions. Compared with the global meteoric water line (GMWL) with equation of δ2H=8.00δ18O+10.00, the slope and intercept of local meteoric water line (LMWL) for precipitation on the Gannan Plateau were smaller (7.49 and 7.63, respectively), reflecting the existence of a stronger secondary evaporation effect under the clouds in the region. The sources of water vapor on the Gannan Plateau showed significant seasonality and spatial heterogeneity. Specifically, the westerly belt and monsoon were the main water vapor transport paths at each sampling point, with Central Asian continental water vapor dominating in spring (53.49%), Indian Ocean water vapor dominating in summer (52.53%), Atlantic Ocean water vapor dominating in autumn (46.74%), and Atlantic Ocean and Mediterranean Sea water vapor dominating in winter (42.30% and 33.68%, respectively). Changes in the intensity of convective activity and Outgoing Longwave Radiation (OLR) affected the enrichment of isotopic values, which exhibited the same change trends as δ18O. During the precipitation process, the δ18O value first decreased and then increased. During the initial and final stages of precipitation process, precipitation was mainly influenced by continental air masses, while during the middle stage, it was controlled by marine air masses. The systematic research on precipitation isotopes and water vapor sources is important for climate change research and extreme precipitation prediction on the Gannan Plateau and other similar areas.