按提交时间
按主题分类
按作者
按机构
  • Magnetically Driven Relativistic Jet in the High-Redshift Blazar OH~471

    分类: 天文学 >> 天体物理学 提交时间: 2024-05-20

    摘要: Context : Understanding the mechanisms that launch and shape powerful relativistic jets from supermassive black holes (SMBHs) in high-redshift active galactic nuclei (AGN) is crucial for probing the co-evolution of SMBHs and galaxies over cosmic time. Aims :We study the high-redshift ($z=3.396$) blazar OH~471 to explore the jet launching mechanism in the early Universe. Methods : Using multi-frequency radio monitoring observations and high-resolution Very Long Baseline Interferometry imaging over three decades, we study the milliarcsecond structure and long-term variability of OH~471. Results : Spectral modelling of the radio flux densities reveals a synchrotron self-absorbed spectrum indicating strong magnetic fields within the compact core. By applying the flux freezing approximation, we estimate the magnetic flux carried by the jet and find that it reaches or exceeds theoretical predictions for jets powered by black hole spin energy via the Blandford-Znajek mechanism. This implies that OH~471 was in a magnetically arrested disk (MAD) state where the magnetic flux accumulated near the horizon regulates the accretion flow, allowing efficient extraction of black hole rotational energy. Conclusions : Our study demonstrates the dominance of MAD accretion in powering the prominent radio flares and relativistic jets observed in the radio-loud AGN OH~471 and statistical studies of large samples of high-redshift AGN will shed light on the role of MAD accretion in launching and accelerating the earliest relativistic jets.

  • The interstellar medium distribution, gas kinematics, and system dynamics of the far-infrared luminous quasar SDSS J2310+1855 at $z=6.0$

    分类: 天文学 >> 天文学 提交时间: 2023-02-21

    摘要: We present Atacama Large Millimeter/submillimeter Array (ALMA) sub-kiloparsec- to kiloparsec-scale resolution observations of the [C ii], CO (98), and OH+ (1101) lines along with their dust continuum emission toward the far-infrared (FIR) luminous quasar SDSS J231038.88+185519.7 at z = 6.0031, to study the interstellar medium distribution, the gas kinematics, and the quasar-host system dynamics. We decompose the intensity maps of the [C ii] and CO (98) lines and the dust continuum with two-dimensional elliptical Srsic models. The [C ii] brightness follows a flat distribution with a Srsic index of 0.59. The CO (98) line and the dust continuum can be fit with an unresolved nuclear component and an extended Srsic component with a Srsic index of 1, which may correspond to the emission from an active galactic nucleus dusty molecular torus and a quasar host galaxy, respectively. The different [C ii] spatial distribution may be due to the effect of the high dust opacity, which increases the FIR background radiation on the [C ii] line, especially in the galaxy center, significantly suppressing the [C ii] emission profile. The dust temperature drops with distance from the center. The effective radius of the dust continuum is smaller than that of the line emission and the dust mass surface density, but is consistent with that of the star formation rate surface density. This may indicate that the dust emission is a less robust tracer of the dust and gas distribution but is a decent tracer of the obscured star formation activity. The OH+ (1101) line shows a P-Cygni profile with an absorption at 400 km/s, which may indicate an outflow with a neutral gas mass of (6.2 1.2) 108 M along the line of sight. We employed a three-dimensional tilted ring model to fit the [C ii] and CO (98) data cubes. The two lines are both rotation dominated and trace identical disk geometries and gas motions. This suggest that the [C ii] and CO (98) gas are coplanar and corotating in this quasar host galaxy. The consistent circular velocities measured with [C ii] and CO (98) lines indicate that these two lines trace a similar gravitational potential. We decompose the circular rotation curve measured from the kinematic model fit to the [C ii] line into four matter components (black hole, stars, gas, and dark matter). The quasar-starburst system is dominated by baryonic matter inside the central few kiloparsecs. We constrain the black hole mass to be 2.97+0.51 0.77 109 M ; this is the first time that the dynamical mass of a black hole has been measured at z 6. This mass is consistent with that determined using the scaling relations from quasar emission lines. A massive stellar component (on the order of 109 M ) may have already existed when the Universe was only 0.93 Gyr old. The relations between the black hole mass and the baryonic mass of this quasar indicate that the central supermassive black hole may have formed before its host galaxy.

  • Revisit of cosmic age problem

    分类: 物理学 >> 基本粒子与场物理学 提交时间: 2016-05-09

    摘要: We investigate the cosmic age problem associated with 9 extremely old globular clusters in M31 galaxy and 1 very old high-z quasar automatic plate-measuring machine 08279 + 5255 at z = 3.91. These 9 globular clusters have not been used to study the cosmic age problem in the previous literature. By evaluating the age of the Universe in the Lambda cold dark matter model with the observational constraints from the Type Ia supernovae, the baryon acoustic oscillations, the cosmic microwave background, and the independent H-0 measurements, we find that the existence of 5 globular clusters and 1 high-z quasar are in tension (over 2 sigma confidence level) with the current cosmological observations. So if the age estimates of these objects are correct, the cosmic age puzzle still remains in the standard cosmology. Moreover, we extend our investigations to the cases of the interacting dark energy models. It is found that although the introduction of the interaction between dark sectors can give a larger cosmic age, the interacting dark energy models still have difficulty to pass the cosmic age test.