分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-30
摘要: Flood and drought are the two most prevalent abiotic stresses causing major yield reduction globally. In the last decade, molecular mechanisms of flood tolerance in rice have been revealed with successful release of flash flood-tolerant varieties to farmers. However, despite extensive research, the breakthrough of drought tolerance is still to come. In this review, we have examined the distribution and population types of drought-and flood-tolerant rice accessions, synthesized recent progresses of flood and drought tolerance research, and proposed a hypothesis that the molecular mechanisms of both drought and flood tolerance may be regulated by cross-talked pathways and coexist in aus subpopulation.We conclude that it is the time to mine the key regulator(s) of drought tolerance through de novo assembly of drought-tolerant aus landrace(s) with other molecular approaches and develop drought-tolerant rice using genome manipulation weaponry.
分类: 地球科学 >> 水文学 提交时间: 2024-08-14 合作期刊: 《干旱区科学》
摘要: Since the 1950s, numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin (LRB), China. While these measures have protected the upstream soil and water ecological environment, they have led to a sharp reduction in the downstream flow and the deterioration of the river ecological environment. Therefore, it is important to evaluate the impact of soil and water conservation measures on hydrological processes to assess long-term runoff changes. Using the Soil and Water Assessment Tool (SWAT) models and sensitivity analyses based on the Budyko hypothesis, this study quantitatively evaluated the effects of climate change, direct water withdrawal, and soil and water conservation measures on runoff in the LRB during different periods, including different responses to runoff discharge, hydrological regime, and flood processes. The runoff series were divided into a baseline period (1956–1969) and two altered periods, i.e., period 1 (1970–1999) and period 2 (2000–2020). Human activities were the main cause of the decrease in runoff during the altered periods, contributing 86.03% (–29.61 mm), while the contribution of climate change was only 13.70% (–4.70 mm). The impact of climate change manifests as a decrease in flood volume caused by a reduction in precipitation during the flood season. Analysis of two flood cases indicated a 66.00%–84.00% reduction in basin runoff capacity due to soil and water conservation measures in the upstream area. Soil and water conservation measures reduced the peak flow and total flood volume in the upstream runoff area by 77.98% and 55.16%, respectively, even with nearly double the precipitation. The runoff coefficient in the reservoir area without soil and water conservation measures was 4.0 times that in the conservation area. These results contribute to the re-evaluation of soil and water conservation hydrological effects and provide important guidance for water resource planning and water conservation policy formulation in the LRB.
分类: 地球科学 >> 地理学 提交时间: 2021-12-30 合作期刊: 《干旱区科学》
摘要: The farming-pastoral ecotone of northern China (FPENC) provides an important ecological barrier which restrains the invasion of desert into Northwest China. Studying drought and flood characteristics in the FPENC can provide scientific support and practical basis for the protection of the FPENC. Based on monthly precipitation data from 115 meteorological stations, we determined the changes in climate and the temporal and spatial variations of drought and flood occurrence in the FPENC during 1960–2020 using the Standardized Precipitation Index (SPI), Morlet wavelet transform, and inverse distance weighted interpolation method. Annual precipitation in the FPENC showed a slightly increasing trend from 1960 to 2020, with an increasing rate of about 1.15 mm/a. The interannual SPI exhibited obvious fluctuations, showing an overall non-significant upward trend (increasing rate of 0.02/a). Therefore, the study area showed a wetting trend in recent years. Drought and flood disasters mainly occurred on an interannual change cycle of 2–6 and 9–17 a, respectively. In the future, a tendency towards drought can be expected in the FPENC. The temporal and spatial distribution of drought and flood differed in the northwestern, northern, and northeastern segments of the FPENC, and most of the drought and flood disasters occurred in local areas. Severe and extreme drought disasters were concentrated in the northwestern and northeastern segments, and severe and extreme flood disasters were mainly in the northeastern segment. Drought was most frequent in the northwestern segment, the central part of the northeastern segment, and the northern part of the northern segment. Flood was most frequent in the western part of the northwestern segment, the eastern part of the northeastern segment, and the eastern and western parts of the northern segment. The accurate evaluation of the degrees of drought and flood disasters in the FPENC will provide scientific basis for the regional climate study and critical information on which to base decisions regarding environmental protection and socio-economic development in this region.
分类: 地球科学 >> 地球科学史 提交时间: 2018-10-29 合作期刊: 《干旱区科学》
摘要: Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.