分类: 图书馆学、情报学 >> 情报学 提交时间: 2017-11-08 合作期刊: 《数据分析与知识发现》
摘要: 【目的】为更方便地查询和利用各个领域的海量关联数据, 提出一种关联数据知识图谱概览的生成方法,使得用户在查询前就能了解关联数据访问点的内部数据结构。【方法】通过SPARQL 查询关联数据所包含的领域知识关系, 针对每一个知识关系构建知识图谱概览三元组并形成初步的知识图谱概览, 再抽取每个知识分类的知识图谱概览三元组并合并到前者形成完整的知识图谱概览。【结果】研发Cytoscape 插件实现此方法, 并进一步提供知识图谱概览可视化功能。【局限】不能处理匿名节点等复杂知识分类抽取。【结论】在生物医学领域分别进行单点抽取、关联“桥”和关联“包含”三项测试, 测试结果表明该方法抽取速度快而稳定, 抽取结果的查全率高, 且不需要网络爬虫或额外的索引工作。
分类: 图书馆学、情报学 >> 情报学 提交时间: 2017-11-08 合作期刊: 《数据分析与知识发现》
摘要: 【目的】为更方便地查询和利用各个领域的海量关联数据, 提出一种关联数据知识图谱概览的生成方法,使得用户在查询前就能了解关联数据访问点的内部数据结构。【方法】通过SPARQL 查询关联数据所包含的领域知识关系, 针对每一个知识关系构建知识图谱概览三元组并形成初步的知识图谱概览, 再抽取每个知识分类的知识图谱概览三元组并合并到前者形成完整的知识图谱概览。【结果】研发Cytoscape 插件实现此方法, 并进一步提供知识图谱概览可视化功能。【局限】不能处理匿名节点等复杂知识分类抽取。【结论】在生物医学领域分别进行单点抽取、关联“桥”和关联“包含”三项测试, 测试结果表明该方法抽取速度快而稳定, 抽取结果的查全率高, 且不需要网络爬虫或额外的索引工作。
分类: 生物学 >> 生物物理学 提交时间: 2016-05-12
摘要: Protein-protein interaction (PPI) networks serve as a powerful tool for unraveling protein functions, disease-gene and disease-disease associations. However, a direct strategy for integrating protein interaction, protein function and diseases is still absent. Moreover, the interrelated relationships among these three levels are poorly understood. Here we present a novel systematic method to integrate protein interaction, function, and disease networks. We first identified topological modules in human protein interaction data using the network topological algorithm (NeTA) we previously developed. The resulting modules were then associated with functional terms using Gene Ontology to obtain functional modules. Finally, disease modules were constructed by associating the modules with OMIM and GWAS. We found that most topological modules have cohesive structure, significant pathway annotations and good modularity. Most functional modules (70.6%) fully cover corresponding topological modules, and most disease modules (88.5%) are fully covered by the corresponding functional modules. Furthermore, we identified several protein modules of interest that we describe in detail, which demonstrate the power of our integrative approach. This approach allows us to link genes, and pathways with their corresponding disorders, which may ultimately help us to improve the prevention, diagnosis and treatment of disease.