注册 登录
返回旧版
EN 中文
  • 首页
  • 论文提交
  • 论文浏览
  • 论文检索
  • 个人中心
  • 帮助
按提交时间
  • 1
按主题分类
  • 1
按作者
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
按机构
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
当前资源共 1条
隐藏摘要 点击量 时间 下载量
  • 1. chinaXiv:201605.01316
    下载全文

    Detection of Dendritic Spines Using Wavelet-Based Conditional Symmetric Analysis and Regularized Morphological Shared-Weight Neural Networks

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-11

    Wang, Shuihua Li, Yang Du, Sidan Wang, Shuihua Zhang, Yudong Chen, Mengmeng Wu, Jane Chen, Mengmeng Wu, Jane Chen, Mengmeng Zhang, Yudong Han, Liangxiu

    摘要:Identification and detection of dendritic spines in neuron images are of high interest in diagnosis and treatment of neurological and psychiatric disorders (e.g., Alzheimer's disease, Parkinson's diseases, and autism). In this paper, we have proposed a novel automatic approach using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks (RMSNN) for dendritic spine identification involving the following steps: backbone extraction, localization of dendritic spines, and classification. First, a new algorithm based on wavelet transform and conditional symmetric analysis has been developed to extract backbone and locate the dendrite boundary. Then, the RMSNN has been proposed to classify the spines into three predefined categories (mushroom, thin, and stubby). We have compared our proposed approach against the existing methods. The experimental result demonstrates that the proposed approach can accurately locate the dendrite and accurately classify the spines into three categories with the accuracy of 99.1% for "mushroom" spines, 97.6% for "stubby" spines, and 98.6% for "thin" spines.

    同行评议状态:待评议

    点击量 1921 下载量 1133 评论 0
  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心