• Derivation of salt content in salinized soil from hyperspectral reflectance data: A case study at Minqin Oasis, Northwest China

    分类: 生物学 >> 生态学 提交时间: 2019-01-17 合作期刊: 《干旱区科学》

    摘要: Soil salinization is a serious ecological and environmental problem because it adversely affects sustainable development worldwide, especially in arid and semi-arid regions. It is crucial and urgent that advanced technologies are used to efficiently and accurately assess the status of salinization processes. Case studies to determine the relations between particular types of salinization and their spectral reflectances are essential because of the distinctive characteristics of the reflectance spectra of particular salts. During April 2015 we collected surface soil samples (0–10 cm depth) at 64 field sites in the downstream area of Minqin Oasis in Northwest China, an area that is undergoing serious salinization. We developed a linear model for determination of salt content in soil from hyperspectral data as follows. First, we undertook chemical analysis of the soil samples to determine their soluble salt contents. We then measured the reflectance spectra of the soil samples, which we post-processed using a continuum-removed reflectance algorithm to enhance the absorption features and better discriminate subtle differences in spectral features. We applied a normalized difference salinity index to the continuum-removed hyperspectral data to obtain all possible waveband pairs. Correlation of the indices obtained for all of the waveband pairs with the wavebands corresponding to measured soil salinities showed that two wavebands centred at wavelengths of 1358 and 2382 nm had the highest sensitivity to salinity. We then applied the linear regression modelling to the data from half of the soil samples to develop a soil salinity index for the relationships between wavebands and laboratory measured soluble salt content. We used the hyperspectral data from the remaining samples to validate the model. The salt content in soil from Minqin Oasis were well produced by the model. Our results indicate that wavelengths at 1358 and 2382 nm are the optimal wavebands for monitoring the concentrations of chlorine and sulphate compounds, the predominant salts at Minqin Oasis. Our modelling provides a reference for future case studies on the use of hyperspectral data for predictive quantitative estimation of salt content in soils in arid regions. Further research is warranted on the application of this method to remotely sensed hyperspectral data to investigate its potential use for large-scale mapping of the extent and severity of soil salinity.

  • Estimation of rock Fe content based on hyperspectral indices

    分类: 地球科学 >> 地理学 提交时间: 2021-12-30 合作期刊: 《干旱区科学》

    摘要: Information on the Fe content of bare rocks is needed for implementing geochemical processes and identifying mines. However, the influence of Fe content on the spectra of bare rocks has not been thoroughly analyzed in previous studies. The Saur Mountain region within the Hoboksar of the Russell Hill depression was selected as the study area. Specifically, we analyzed six hyperspectral indices related to rock Fe content based on laboratory measurements (Dataset I) and field measurements (Dataset II). In situ field measurements were acquired to verify the laboratory measurements. Fe content of the rock samples collected from different fresh and weathered rock surfaces were divided into six levels to reveal the spatial distributions of Fe content of these samples. In addition, we clearly displayed wavelengths with obvious characteristics by analyzing the spectra of these samples. The results of this work indicated that Fe content estimation models based on the fresh rock surface measurements in the laboratory can be applied to in situ field or satellite-based measurements of Fe content of the weathered rock surfaces. It is not the best way to use only the single wavelengths reflectance at all absorption wavelengths or the depth of these absorption features to estimate Fe content. Based on sample data analysis, the comparison with other indices revealed that the performance of the modified normalized difference index is the best indicator for estimating rock Fe content, with R2 values of 0.45 and 0.40 corresponding to datasets I and II, respectively. Hence, the modified normalized difference index (the wavelengths of 2220, 2290, and 2370 nm) identified in this study could contribute considerably to improve the identification accuracy of rock Fe content in the bare rock areas. The method proposed in this study can obviously provide an efficient solution for large-scale rock Fe content measurements in the field.

  • A new method of searching for concealed Au deposits by using the spectrum of arid desert plant species

    分类: 地球科学 >> 地理学 提交时间: 2021-12-03 合作期刊: 《干旱区科学》

    摘要: With the increase of exploration depth, it is more and more difficult to find Au deposits. Due to the limitation of time and cost, traditional geological exploration methods are becoming increasingly difficult to be effectively applied. Thus, new methods and ideas are urgently needed. This study assessed the feasibility and effectiveness of using hyperspectral technology to prospect for hidden Au deposits. For this purpose, 48 plant (Seriphidium terrae-albae) and soil (aeolian gravel desert soil) samples were first collected along a sampling line that traverses an Au mineralization alteration zone (Aketasi mining region in an arid region of China) and were used to obtain soil Au contents by a chemical analysis method and the reflectance spectra of plants obtained with an Analytical Spectral Device (ASD) FieldSpec3 spectrometer. Then, the corresponding relationship between the soil Au content anomaly and concealed Au deposits was investigated. Additionally, the characteristic bands were selected from plant spectra using four different methods, namely, genetic algorithm (GA), stepwise regression analysis (STE), competitive adaptive reweighted sampling (CARS), and correlation coefficient method (CC), and were then input into the partial least squares (PLS) method to construct a model for estimating the soil Au content. Finally, the quantitative relationship between the soil Au content and the 15 different plant transformation spectra was established using the PLS method. The results were compared with those of a model based on the full spectrum. The results obtained in this study indicate that the location of concealed Au deposits can be predicted based on soil geochemical anomaly information, and it is feasible and effective to use the full plant spectrum and PLS method to estimate the Au content in the soil. The cross-validated coefficient of determination (R2) and the ratio of the performance to deviation (RPD) between the predicted value and the measured value reached the maximum of 0.8218 and 2.37, respectively, with a minimum value of 6.56 μg/kg for the root-mean-squared error (RMSE) in the full spectrum model. However, in the process of modeling, it is crucial to select the appropriate transformation spectrum as the input parameter for the PLS method. Compared with the GA, STE, and CC methods, CARS was the superior characteristic band screening method based on the accuracy and complexity of the model. When modeling with characteristic bands, the highest accuracy, R2 of 0.8016, RMSE of 7.07 μg/kg, and RPD of 2.20 were obtained when 56 characteristic bands were selected from the transformed spectra (1/lnR)' (where it represents the first derivative of the reciprocal of the logarithmic spectrum) of sampled plants using the CARS method and were input into the PLS method to construct an inversion model of the Au content in the soil. Thus, characteristic bands can replace the full spectrum when constructing a model for estimating the soil Au content. Finally, this study proposes a method of using plant spectra to find concealed Au deposits, which may have promising application prospects because of its simplicity and rapidity.

  • Influence of vapor pressure deficit on vegetation growth in China

    分类: 地球科学 >> 大气科学 提交时间: 2024-06-21 合作期刊: 《干旱区科学》

    摘要: Vapor pressure deficit (VPD) plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation, second only to carbon dioxide (CO2). As a robust indicator of atmospheric water demand, VPD has implications for global water resources, and its significance extends to the structure and functioning of ecosystems. However, the influence of VPD on vegetation growth under climate change remains unclear in China. This study employed empirical equations to estimate the VPD in China from 2000 to 2020 based on meteorological reanalysis data of the Climatic Research Unit (CRU) Time-Series version 4.06 (TS4.06) and European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA-5). Vegetation growth status was characterized using three vegetation indices, namely gross primary productivity (GPP), leaf area index (LAI), and near-infrared reflectance of vegetation (NIRv). The spatiotemporal dynamics of VPD and vegetation indices were analyzed using the Theil-Sen median trend analysis and Mann-Kendall test. Furthermore, the influence of VPD on vegetation growth and its relative contribution were assessed using a multiple linear regression model. The results indicated an overall negative correlation between VPD and vegetation indices. Three VPD intervals for the correlations between VPD and vegetation indices were identified: a significant positive correlation at VPD below 4.820 hPa, a significant negative correlation at VPD within 4.820–9.000 hPa, and a notable weakening of negative correlation at VPD above 9.000 hPa. VPD exhibited a pronounced negative impact on vegetation growth, surpassing those of temperature, precipitation, and solar radiation in absolute magnitude. CO2 contributed most positively to vegetation growth, with VPD offsetting approximately 30.00% of the positive effect of CO2. As the rise of VPD decelerated, its relative contribution to vegetation growth diminished. Additionally, the intensification of spatial variations in temperature and precipitation accentuated the spatial heterogeneity in the impact of VPD on vegetation growth in China. This research provides a theoretical foundation for addressing climate change in China, especially regarding the challenges posed by increasing VPD