按提交时间
按主题分类
按作者
按机构
  • A spatial assessment of potential biomass for bioenergy in Australia in 2010, and possible expansion by 2030 and 2050

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要: This paper provides spatial estimates of potentially available biomass for bioenergy in Australia in 2010, 2030 and 2050 (under clearly stated assumptions) for the following biomass sources: crop stubble, native grasses, pulpwood and residues (created either during forest harvesting or wood processing) from plantations and native forests, bagasse, organic municipal solid waste and new short-rotation tree crops. For each biomass type, we estimated annual potential availability at the finest scale possible with readily accessible data, and then aggregated to make estimates for each of 60 Statistical Divisions (administrative areas) across Australia. The potentially available lignocellulosic biomass is estimated at approximately 80Mt per year, with the major contributors of crop stubble (27.7Mt per year), grasses (19.7Mt per year) and forest plantations (10.9Mt per year). Over the next 2040years, total potentially available biomass could increase to 100115Mt per year, with new plantings of short-rotation trees being the major source of the increase (14.7Mt per year by 2030 and 29.3Mt per year by 2050). We exclude oilseeds, algae and regrowth, that is woody vegetation naturally regenerating on previously cleared land, which may be important in several regions of Australia (Australian Forestry 77, 2014, 1; Global Change Biology Bioenergy 7, 2015, 497). We briefly discuss some of the challenges to providing a reliable and sustainable supply of the large amounts of biomass required to build a bioenergy industry of significant scale. More detailed regional analyses, including of the costs of delivered biomass, logistics and economics of harvest, transport and storage, competing markets for biomass and a full assessment of the sustainability of production are needed to underpin investment in specific conversion facilities (e.g. Opportunities for forest bioenergy: An assessment of the environmental and economic opportunities and constraints associated with bioenergy production from biomass resources in two prospective regions of Australia, 2011a).

  • Knockdown of a laccase in Populus deltoides confers altered cell wall chemistry and increased sugar release

    分类: 生物学 >> 植物学 >> 植物生物化学、植物生物物理学 提交时间: 2016-05-03

    摘要: Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated, and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here, we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G064000, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent on a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. We propose that this particular laccase has a range of functions related to oxidation of phenolics and conjugation of flavonoids that interact with lignin in the cell wall.

  • Expression of ZmGA20ox cDNA alters plant morphology and increases biomass production of switchgrass (Panicum virgatum L.)

    分类: 生物学 >> 植物学 >> 植物细胞学与植物遗传学、植物形态学 提交时间: 2016-05-04

    摘要: Switchgrass (Panicum virgatum L.) is considered a model herbaceous energy crop for the USA, for its adaptation to marginal land, low rainfall and nutrient-deficient soils; however, its low biomass yield is one of several constraints, and this might be rectified by modulating plant growth regulator levels. In this study, we have determined whether the expression of the Zea mays gibberellin 20-oxidase (ZmGA20ox) cDNA in switchgrass will improve biomass production. The ZmGA20ox gene was placed under the control of constitutive CaMV35S promoter with a strong TMV omega enhancer, and introduced into switchgrass via Agrobacterium-mediated transformation. The transgene integration and expression levels of ZmGA20ox in T0 plants were analysed using Southern blot and qRT-PCR. Under glasshouse conditions, selected transgenic plants exhibited longer leaves, internodes and tillers, which resulted in twofold increased biomass. These phenotypic alterations correlated with the levels of transgene expression and the particular gibberellin content. Expression of ZmGA20ox also affected the expression of genes coding for key enzymes in lignin biosynthesis. Our results suggest that the employment of ectopic ZmGA20ox and selection for natural variants with high level expression of endogenous GA20ox are appropriate approaches to increase biomass production of switchgrass and other monocot biofuel crops.

  • Productivity and water use efficiency of Agave americana in the first field trial as bioenergy feedstock on arid lands

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要: Agave species are high-yielding crassulacean acid metabolism (CAM) plants, some of which are grown commercially and recognized as potential bioenergy species for dry regions of the world. This study is the first field trial of Agave species for bioenergy in the United States, and was established to compare the production of Agave americana with the production of Agave tequilana and Agave fourcroydes, which are produced commercially in Mexico for tequila and fiber. The field trial included four experimental irrigation levels to test the response of biomass production to water inputs. After 3years, annual production of healthy A.americana plants reached 9.3Mgdrymassha1yr1 (including pup mass) with 530mm of annual water inputs, including both rainfall and irrigation. Yields in the most arid conditions tested (300mmyr1 water input) were 2.04.0Mgdrymassha1yr1. Agave tequilana and Agave fourcroydes were severely damaged by cold in the first winter, and produced maximum yields of only 0.04Mgha1yr1 and 0.26Mgha1yr1, respectively. The agave snout weevil (Scyphophorus acupunctatus) emerged as an important challenge for A.americana cropping, killing a greater number of plants in the higher irrigation treatments. Physiological differences in A.americana plants across irrigation treatments were most evident in the warmest season, with gas exchange beginning up to 3h earlier and water use efficiency declining in treatments with the greatest water input (780mmyr1 water input). Yields were lower than previous projections for Agave species, but results from this study suggest that A.americana has potential as a bioenergy crop and would have substantially reduced irrigation requirements relative to conventional crops in the southwestern USA. Challenges for pest management and harvesting must still be addressed before an efficient production system that uses Agave can be realized.

  • Cell wall targeted in planta iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice

    分类: 生物学 >> 植物学 >> 植物生理学 提交时间: 2016-05-03

    摘要: Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusion polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.

  • Environmental implications of the use of agro‐industrial residues for biorefineries: application of a deterministic model for indirect land‐use changes

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要: Biorefining agro-industrial biomass residues for bioenergy production represents an opportunity for both sustainable energy supply and greenhouse gas (GHG) emissions mitigation. Yet, is bioenergy the most sustainable use for these residues? To assess the importance of the alternative use of these residues, a consequential life cycle assessment (LCA) of 32 energy-focused biorefinery scenarios was performed based on eight selected agro-industrial residues and four conversion pathways (two involving bioethanol and two biogas). To specifically address indirect land-use changes (iLUC) induced by the competing feed/food sector, a deterministic iLUC model, addressing global impacts, was developed. A dedicated biochemical model was developed to establish detailed mass, energy, and substance balances for each biomass conversion pathway, as input to the LCA. The results demonstrated that, even for residual biomass, environmental savings from fossil fuel displacement can be completely outbalanced by iLUC, depending on the feed value of the biomass residue. This was the case of industrial residues (e.g. whey and beet molasses) in most of the scenarios assessed. Overall, the GHGs from iLUC impacts were quantified to 4.1tCO2-eq.ha1demanded yr1 corresponding to 1.21.4tCO2-eq.t1 dry biomass diverted from feed to energy market. Only, bioenergy from straw and wild grass was shown to perform better than the alternative use, as no competition with the feed sector was involved. Biogas for heat and power production was the best performing pathway, in a short-term context. Focusing on transport fuels, bioethanol was generally preferable to biomethane considering conventional biogas upgrading technologies. Based on the results, agro-industrial residues cannot be considered burden-free simply because they are a residual biomass and careful accounting of alternative utilization is a prerequisite to assess the sustainability of a given use. In this endeavor, the iLUC factors and biochemical model proposed herein can be used as templates and directly applied to any bioenergy consequential study involving demand for arable land.

  • Harvest management affects biomass composition responses of C4 perennial bioenergy grasses in the humid subtropical USA

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要: Elephantgrass (Pennisetum purpureum Schum.) and energycane (Saccharum spp. hybrid) are high-yielding C4 grasses that are attractive biofuel feedstocks in the humid subtropics. Determining appropriate harvest management practices for optimal feedstock chemical composition is an important precursor to their successful use in production systems. In this research, we have investigated the effects of harvest timing and frequency on biomass nutrient, carbohydrate and lignin composition of UF1 and cv. Merkeron elephantgrasses and cv. L 79-1002 energycane. Biomass properties under increased harvest frequency (twice per year) and delayed harvest (once per year after frost) were compared with a control (once per year prior to frost). There were no differences between elephantgrass entries in structural carbohydrates; however, elephantgrasses had greater structural hexose concentration than energycane for single-harvest treatments (avg. 398 vs. 366mgg1), a trait that is preferred for biofuel production. Delayed harvest of energycane decreased structural hexose compared with the control (374 vs. 357mgg1) because nonstructural components accumulated in energycane stem as harvest was delayed. Frequent defoliation (2X) increased N, P, and ash concentrations (75% for N and P and 58% for ash) in harvested biomass compared with single-harvest treatments. We conclude that multiple harvests per year increase the harvest period during which feedstock is available for processing, but they do not result in optimal feedstock composition. In contrast, extending the period of feedstock supply by delaying a single harvest to after first freeze did not negatively affect cell wall constituent properties, while it increased length of the harvest period by ~30days in the southeast USA.

  • Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield

    分类: 生物学 >> 植物学 >> 植物生理学 提交时间: 2016-05-04

    摘要: The great need for more sustainable alternatives to fossil fuels has increased our research interests in algal biofuels. Microalgal cells, characterized by high photosynthetic efficiency and rapid cell division, are an excellent source of neutral lipids as potential fuel stocks. Various stress factors, especially nutrient-starvation conditions, induce an increased formation of lipid bodies filled with triacylglycerol in these cells. Here we review our knowledge base on glycerolipid synthesis in the green algae with an emphasis on recent studies on carbon flux, redistribution of lipids under nutrient-limiting conditions and its regulation. We discuss the contributions and limitations of classical and novel approaches used to elucidate the algal triacylglycerol biosynthetic pathway and its regulatory network in green algae. Also discussed are gaps in knowledge and suggestions for much needed research both on the biology of triacylglycerol accumulation and possible avenues to engineer improved algal strains.

  • Cellulosic feedstock production on Conservation Reserve Program land: potential yields and environmental effects

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要: Producing biofuel feedstocks on current agricultural land raises questions of a ‘food-vs.-fuel’ trade-off. The use of current or former Conservation Reserve Program (CRP) land offers an alternative; yet the volumes of ethanol that could be produced and the potential environmental impacts of such a policy are unclear. Here, we applied the Environmental Policy Integrated Climate model to a US Department of Agriculture database of over 200 000 CRP polygons in Iowa, USA, as a case study. We simulated yields and environmental impacts of growing three cellulosic biofuel feedstocks on CRP land: (i) an Alamo-variety switchgrass (Panicum virgatum L.); (ii) a generalized mixture of C4 and C3 grasses; (iii) and no-till corn (Zea mays L.) with residue removal. We simulated yields, soil erosion, and soil carbon (C) and nitrogen (N) stocks and fluxes. We found that although no-till corn with residue removal produced approximately 2.6–4.4 times more ethanol per area compared to switchgrass and the grass mixture, it also led to 3.9–4.5 times more erosion, 4.4–5.2 times more cumulative N loss, and a 10% reduction in total soil carbon as opposed to a 6–11% increase. Switchgrass resulted in the best environmental outcomes even when expressed on a per liter ethanol basis. Our results suggest planting no-till corn with residue removal should only be done on low slope soils to minimize environmental concerns. Overall, this analysis provides additional information to policy makers on the potential outcome and effects of producing biofuel feedstocks on current or former conservation lands.

  • Candidate perennial bioenergy grasses have a higher albedo than annual row crops

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要: The production of perennial cellulosic feedstocks for bioenergy presents the potential to diversify regional economies and the national energy supply, while also serving as climate regulators due to a number of biogeochemical and biogeophysical differences relative to row crops. Numerous observational and model-based approaches have investigated biogeochemical trade-offs, such as increased carbon sequestration and increased water use, associated with growing cellulosic feedstocks. A less understood aspect is the biogeophysical changes associated with the difference in albedo (), which could alter the local energy balance and cause local to regional cooling several times larger than that associated with offsetting carbon. Here, we established paired fields of Miscanthusgiganteus (miscanthus) and Panicum virgatum (switchgrass), two of the leading perennial cellulosic feedstock candidates, and traditional annual row crops in the highly productive Corn-belt. Our results show that miscanthus did and switchgrass did not have an overall higher than current row crops, but a strong seasonal pattern existed. Both perennials had consistently higher growing season than row crops and winter did not differ. The lack of observed differences in winter , however, masked an interaction between snow cover and species differences, with the perennial species, compared with the row crops, having a higher when snow was absent and a much lower when snow was present. Overall, these changes resulted in an average net reduction in annual absorbed energy of about 5Wm2 for switchgrass and about 8Wm2 for miscanthus relative to annual crops. Therefore, the conversion from annual row to perennial crops alters the radiative balance of the surface via changes in and could lead to regional cooling.

  • Food and bioenergy: reviewing the potential of dual‐purpose wheat crops

    分类: 生物学 >> 植物学 >> 应用植物学 提交时间: 2016-05-04

    摘要: Within the bioenergy debate, the food vs. fuel controversy quickly replaced enthusiasm for biofuels derived from first-generation feedstocks. Second-generation biofuels offer an opportunity to produce fuels from dedicated energy crops, waste materials or coproducts such as cereal straw. Wheat represents one of the most widely grown arable crops around the world, with wheat straw, a potential source of biofuel feedstock. Wheat straw currently has limited economic value; hence, wheat cultivars have been bred for increased grain yield; however, with the development of second-generation biofuel production, utilization of straw biomass provides the potential for food and fuel. Reviewing the evidence for the development of dual-purpose wheat cultivars optimized for food grain and straw biomass production, we present a holistic assessment of a potential ideotype for a dual-purpose cultivar (DPC). An ideal DPC would be characterized by high grain and straw yields, high straw digestibility (i.e. biofuel yield potential) and good lodging resistance. Considerable variation in these traits exists among current wheat cultivars, facilitating the selection of improved individual traits; however, increasing straw yield and digestibility could potentially have negative trade-off impacts on grain yield and lodging resistance, reducing the feasibility of a single ideotype. Adoption of alternative management practices could potentially increase straw yield and digestibility, albeit these practices are also associated with potential trade-offs among cultivar traits. Benefits from using DPCs include reduced logistics costs along the biofuel feedstock supply chain, but practical barriers to differential pricing for straw digestibility traits are likely to reduce the financial incentive to farmers for growing higher biofuel-quality straw cultivars. Further research is required to explore the relationships among the ideotype traits to quantify potential DPC benefits; this will help to determine whether stakeholders along the bioenergy feedstock supply chain will invest in the development of DPCs that provide food and fuel potential.

  • Hydrological responses of land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops in the Southern High Plains of Texas, USA

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要: The Southern High Plains (SHP) region of Texas in the United States, where cotton is grown in a vast acreage, has the potential to grow cellulosic bioenergy crops such as perennial grasses and biomass sorghum (Sorghum bicolor). Evaluation of hydrological responses and biofuel production potential of hypothetical land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops enables better understanding of the associated key agroecosystem processes and provides for the feasibility assessment of the targeted land use change in the SHP. The Soil and Water Assessment Tool (SWAT) was used to assess the impacts of replacing cotton with perennial Alamo switchgrass (Panicum virgatum L.), Miscanthusgiganteus (Miscanthus sinensis Anderss. [Poaceae]), big bluestem (Andropogon gerardii) and annual biomass sorghum on water balances, water use efficiency and biofuel production potential in the Double Mountain Fork Brazos watershed. Under perennial grass scenarios, the average (19942009) annual surface runoff from the entire watershed decreased by 68% relative to the baseline cotton scenario. In contrast, surface runoff increased by about 5% under the biomass sorghum scenario. Perennial grass land use change scenarios suggested an increase in average annual percolation within a range of 322% and maintenance of a higher soil water content during August to April compared to the baseline cotton scenario. About 19.1, 11.1, 3.2 and 8.8 Mgha1 of biomass could potentially be produced if cotton area in the watershed would hypothetically be replaced by Miscanthus, switchgrass, big bluestem and biomass sorghum, respectively. Finally, Miscanthus and switchgrass were found to be ideal bioenergy crops for the dryland and irrigated systems, respectively, in the study watershed due to their higher water use efficiency, better water conservation effects, greater biomass and biofuel production potential, and minimum crop management requirements.

  • Ecosystem model parameterization and adaptation for sustainable cellulosic biofuel landscape design

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要: Renewable fuel standards in the US and elsewhere mandate the production of large quantities of cellulosic biofuels with low greenhouse gas (GHG) footprints, a requirement which will likely entail extensive cultivation of dedicated bioenergy feedstock crops on marginal agricultural lands. Performance data for such systems is sparse, and non-linear interactions between the feedstock species, agronomic management intensity, and underlying soil and land characteristics complicate the development of sustainable landscape design strategies for low-impact commercial-scale feedstock production. Process-based ecosystem models are valuable for extrapolating field trial results and making predictions of productivity and associated environmental impacts that integrate the effects of spatially variable environmental factors across diverse production landscapes. However, there are few examples of ecosystem model parameterization against field trials on both prime and marginal lands or of conducting landscape-scale analyses at sufficient resolution to capture interactions between soil type, land use, and management intensity. In this work we used a data-diverse, multi-criteria approach to parameterize and validate the DayCent biogeochemistry model for upland and lowland switchgrass using data on yields, soil carbon changes, and soil nitrous oxide emissions from US field trials spanning a range of climates, soil types, and management conditions. We then conducted a high-resolution case study analysis of a real-world cellulosic biofuel landscape in Kansas in order to estimate feedstock production potential and associated direct biogenic GHG emissions footprint. Our results suggest that switchgrass yields and emissions balance can vary greatly across a landscape large enough to supply a biorefinery in response to variations in soil type and land-use history, but that within a given land base both of these performance factors can be widely modulated by changing management intensity. This in turn implies a large sustainable cellulosic biofuel landscape design space within which a system can be optimized to meet economic or environmental objectives.

  • Bioethanol potential from miscanthus with low ILUC risk in the province of Lublin, Poland

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要: Increasing production of biofuels has led to concerns about indirect land-use change (ILUC). So far, significant efforts have been made to assess potential ILUC effects. But limited attention has been paid to strategies for reducing the extent of ILUC and controlling the type of LUC. This case study assesses five key ILUC mitigation measures to quantify the low-ILUC-risk production potential of miscanthus-based bioethanol in Lublin province (Poland) in 2020. In 2020, a total area of 196 to 818 thousand hectare of agricultural land could be made available for biomass production by realizing above-baseline yield developments (95413 thousand ha), increased food chain efficiencies (930 thousand ha) and biofuel feedstock production on underutilized lands (92375 thousand ha). However, a maximum 203269 thousand hectare is considered legally available (not protected) and biophysically suitable for miscanthus production. The resulting low-ILUC-risk bioethanol production potential ranges from 12 to 35PJ per year. The potential from this region alone is higher than the national Polish target for second-generation bioethanol consumption of 9 PJ in 2020. Although the sustainable implementation potential may be lower, the province of Lublin could play a key role in achieving this target. This study shows that the mitigation or prevention of ILUC from bioenergy is only possible when an integrated perspective is adopted on the agricultural and bioenergy sectors. Governance and policies on planning and implementing ILUC mitigation are considered vital for realizing a significant bioenergy potential with low ILUC risk. One important aspect in this regard is monitoring the risk of ILUC and the implementation of ILUC mitigation measures. Key parameters for monitoring are land use, land cover and crop yields.

  • Environmental and resource burdens associated with world biofuel production out to 2050: footprint components from carbon emissions and land use to waste arisings and water consumption

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要: Environmental or ecological footprints have been widely used in recent years as indicators of resource consumption and waste absorption presented in terms of biologically productive land area [in global hectares (gha)] required per capita with prevailing technology. In contrast, carbon footprints are the amount of carbon (or carbon dioxide equivalent) emissions for such activities in units of mass or weight (like kilograms per functional unit), but can be translated into a component of the environmental footprint (on a gha basis). The carbon and environmental footprints associated with the world production of liquid biofuels have been computed for the period 20102050. Estimates of future global biofuel production were adopted from the 2011 International Energy Agency (IEA) technology roadmap for transport biofuels. This suggests that, although first generation biofuels will dominate the market up to 2020, advanced or second generation biofuels might constitute some 75% of biofuel production by 2050. The overall environmental footprint was estimated to be 0.29 billion (bn) gha in 2010 and is likely to grow to around 2.57 bn gha by 2050. It was then disaggregated into various components: bioproductive land, built land, carbon emissions, embodied energy, materials and waste, transport, and water consumption. This component-based approach has enabled the examination of the Manufactured and Natural Capital elements of the four capitals model of sustainability quite broadly, along with specific issues (such as the linkages associated with the so-called energylandwater nexus). Bioproductive land use was found to exhibit the largest footprint component (a 48% share in 2050), followed by the carbon footprint (23%), embodied energy (16%), and then the water footprint (9%). Footprint components related to built land, transport and waste arisings were all found to account for an insignificant proportion to the overall environmental footprint, together amounting to only about 2%