分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2018-11-29 合作期刊: 《计算机应用研究》
摘要: 问题分类是问答系统问题分析研究的基础组成部分,其精度直接影响自然语言理解效果的好坏。针对问句文本通常较短、语义信息与词语共现信息不足等问题,提出一种多层级注意力卷积长短时记忆模型(multi-level attention convolution LSTM neural network ,MAC-LSTM)的问题分类方法。相比基于词嵌入的深度学习模型,该方法使用疑问词注意力机制对问句中的疑问词特征重点关注。同时,使用注意力机制结合卷积神经网络与长短时记忆模型各自文本建模的优势,既能够并行方式提取词汇级特征,又能够学习更高级别的长距离依赖特征。实验表明,该方法较传统的机器学习方法和普通的卷积神经网络、长短时记忆模型有明显的效果提升。