分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2019-04-01 合作期刊: 《计算机应用研究》
摘要: 基于视觉的同时定位和建图(VSLAM)分为前端和后端,前端包括视觉里程计和回环检测,后端包括后端优化和建图。按照估计相机运动的不同方式,将VSLAM分为特征点法和直接法。首先从这两个方面对前端进行综述,阐述其中的关键技术和最新的研究进展,对比分析不同方法的优缺点;然后详细分析优化后端与滤波器后端的区别,进一步地对多个开源代码进行比较研究,分析它们的优劣势和适用场合;再讨论深度学习、语义地图和多机器人在VSLAM领域的研究进展,以及相关技术与VSLAM的结合方式及前景;最后对VSLAM的未来进行展望。
分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-05-10 合作期刊: 《计算机应用研究》
摘要: 为进一步提高视觉SLAM中的光流匹配精度和速度,提出一种融合惯性测量单元(Inertial Measurement Unit,IMU)去除运动模糊的改进光流匹配算法。该算法首先利用IMU运动信息计算的点扩散函数去除运动模糊,提高特征点匹配率;其次在LK(Lucas-Kanade)光流的基础上,引入梯度误差,并使用图像梯度L1范数作为正则项模拟稀疏噪声,构建代价函数;然后利用IMU预测特征点位置作为该算法初始值,并加入BB(Barzilar-Borwein)步长改进原有的高斯牛顿算法,提高计算速度。实验表明,通过两帧之间比较,该算法的效率和精度均优于LK光流法;然后将该算法集成到VINS-Mono框架,在数据集EuRoC上,结果显示该算法提高了原有框架的定位精度和鲁棒性。
分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2018-09-12 合作期刊: 《计算机应用研究》
摘要: 视觉里程计通过分析相机所获取的图像流信息估计移动机器人的位姿。为了深入分析视觉里程计算法的发展现状,结合一些先进的视觉里程计系统,综述了视觉里程计的相关技术以及最新的研究成果。首先简述了视觉里程计的概念和发展历程,介绍了视觉里程计问题的数学描述和分类方法;然后,详细阐述了视觉里程计的关键技术,包括特征模块、帧间位姿估计和减少漂移;此外,还介绍了基于深度学习的视觉里程计的发展动态。最后,总结了视觉里程计目前存在的问题,展望了未来的发展趋势。