分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2018-11-29 合作期刊: 《计算机应用研究》
摘要: 在衡量图像之间的相关度时,图像的物理特征(颜色分布、灰度值等)所能表达的内容可能并非十分全面,因此有必要参考图像视觉所包含的语义信息衡量图像之间的相关度。为此提出了一种基于深度卷积神经网络(deep convolutional neural networks)分类模型的度量图像相关度的方法,利用模型为图像绑定来自于WordNet的语义标签,并参照WordNet结构对标签进行过滤和扩展,利用概念集合计算图像相关度。与人工判定的样本数据比较,Pearson相关系数峰值能够达到0.73,证明该方法在衡量图像相关度时具有一定的效果。
分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2018-10-11 合作期刊: 《计算机应用研究》
摘要: 随着互联网与多媒体拍照技术的飞速发展与普及,使得各种各样的图像资源数量急剧膨胀。如何在众多的图像信息资源中快速、有效地寻找用户最喜欢的图像,成为了图像推荐领域需要解决的一个重要问题。针对这个问题,提出了一种用户偏好的美学图像推荐方法,通过使用深度卷积神经网络提取图像的深层特征,并经过SVMRank后得到一个图像排序得分,同时使用手工标记的图像美学因素(如色调法、图像组合规则、清晰度以及简洁性)计算并得到图像的美学特征,得到一个美学得分,最后进行加权交叉验证得到一个令用户满意的推荐结果。通过实验表明该算法为一种有效的美学偏好推荐方法。
分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2018-11-29 合作期刊: 《计算机应用研究》
摘要: 针对人体动作深度视频的四维信息映射到二维空间后,动作分类容易发生混淆的问题,提出一种基于深度学习的人体动作识别方法。首先构建空间结构动态深度图,将深度视频的四维信息映射到二维空间,进行信息降维处理;然后提出基于联合代价函数的深度卷积神经网络,结合交叉熵损失函数与中心损失函数作为联合代价函数,指导卷积层学习到更具分辨力的深度特征,以进行更精确的分类。在MSRDailyActivity3D和SYSU 3D HOI两个数据集的实验结果表明,与现有方法相比,该方法识别率得到了较明显地提升,验证了该方法的有效性和鲁棒性。该方法较好地解决了动作分类容易发生混淆的问题。
分类: 计算机科学 >> 计算机应用技术 提交时间: 2025-03-12
摘要: 大学英语四级考试成绩早期预警模型易受学生日常行为模式差异干扰,影响预测精度。以某智慧教学平台上与大学英语四级考试直接相关的四级题型模块化学习成绩作为数据来源,建立模块化学习灰度图片数据库,同时将深度学习引入早期预警,形成基于深度卷积神经网络的大学英语四级成绩预警模型,对学生是否能在大学英语四级考试中取得预期成绩进行前期预测。验证结果表明,深度卷积神经网络预测模型相较于现有的预测模型具有更高的预测精度,可得到更早的最佳干预时间,有利于教师更好地对风险学生进行干预,提高学生大学英语四级考试成绩,提升英语语言应用能力。