• Effects of nitrogen and phosphorus additions on soil microbial community structure and ecological processes in the farmland of Chinese Loess Plateau

    分类: 生物学 >> 生态学 提交时间: 2023-08-15 合作期刊: 《干旱区科学》

    摘要: Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs. The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements, namely nitrogen (N) and phosphorus (P). Nevertheless, the specific mechanisms governing the influence of soil microbial community structure and ecological processes in ecologically vulnerable and delicate semi-arid loess agroecosystems remain inadequately understood. Therefore, we explored the effects of different N and P additions on soil microbial community structure and its associated ecological processes in the farmland of Chinese Loess Plateau based on a 36-a long-term experiment. Nine fertilization treatments with complete interactions of high, medium, and low N and P gradients were set up. Soil physical and chemical properties, along with the microbial community structure were measured in this study. Additionally, relevant ecological processes such as microbial biomass, respiration, N mineralization, and enzyme activity were quantified. To elucidate the relationships between these variables, we examined correlation-mediated processes using statistical techniques, including redundancy analysis (RDA) and structural equation modeling (SEM). The results showed that the addition of N alone had a detrimental effect on soil microbial biomass, mineralized N accumulation, and -1,4-glucosidase activity. Conversely, the addition of P exhibited an opposing effect, leading to positive influences on these soil parameters. The interactive addition of N and P significantly changed the microbial community structure, increasing microbial activity (microbial biomass and soil respiration), but decreasing the accumulation of mineralized N. Among them, N24P12 treatment showed the greatest increase in the soil nutrient content and respiration. N12P12 treatment increased the overall enzyme activity and total phospholipid fatty acid (PLFA) content by 70.93%. N and P nutrient contents of the soil dominate the microbial community structure and the corresponding changes in hydrolytic enzymes. Soil microbial biomass, respiration, and overall enzyme activity are driven by mineralized N. Our study provides a theoretical basis for exploring energy conversion processes of soil microbial community and environmental sustainability under long-term N and P additions in semi-arid loess areas.

  • Effects of desert plant communities on soil enzyme activities and soil organic carbon in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia, China

    分类: 农、林、牧、渔 >> 土壤学 提交时间: 2024-05-15 合作期刊: 《干旱区科学》

    摘要: It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon (SOC) for maintaining the stability of the desert ecosystem. In this study, we studied the responses of soil enzyme activities and SOC fractions (particulate organic carbon (POC) and mineral-associated organic carbon (MAOC)) to five typical desert plant communities (Convolvulus tragacanthoides, Ephedra rhytidosperma, Stipa breviflora, Stipa tianschanica var. gobica, and Salsola laricifolia communities) in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region, China. We recorded the plant community information mainly including the plant coverage and herb and shrub species, and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023. Soil samples were also collected at depths of 0–10 cm (topsoil) and 10–20 cm (subsoil) to determine the soil physicochemical properties and enzyme activities. The results showed that the plant coverage and aboveground biomass of S. laricifolia community were significantly higher than those of C. tragacanthoides, S. breviflora, and S. tianschanica var. gobica communities (P<0.05). Soil enzyme activities varied among different plant communities. In the topsoil, the enzyme activities of alkaline phosphatase (ALP) and β-1,4-glucosidas (βG) were significantly higher in E. rhytidosperma and S. tianschanica var. gobica communities than in other plant communities (P<0.05). The topsoil had higher POC and MAOC contents than the subsoil. Specifically, the content of POC in the topsoil was 18.17%–42.73% higher than that in the subsoil. The structural equation model (SEM) indicated that plant species diversity, soil pH, and soil water content (SWC) were the main factors influencing POC and MAOC. The soil pH inhibited the formation of POC and promoted the formation of MAOC. Conversely, SWC stimulated POC production and hindered MAOC formation. Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions, as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems.