• Contents and spatial distribution patterns of heavy metals in the hinterland of the Tengger Desert, China

    分类: 环境科学技术及资源科学技术 >> 环境科学技术基础学科 提交时间: 2022-11-08 合作期刊: 《干旱区科学》

    摘要:The desert in northern China is one of important sources of loess and one significant source of material for sandstorms in Asia. The sand/dust that is transported from desert when sandstorms occur can destroy the growth of crops, cause serious losses and great harm to the economic construction and life safety, and cause natural environment pollution. Hence, it is very important to deepen the research into heavy metals in surface deposits at vulnerable ecological region of arid land of northern China to guide local industrial and agricultural development and improve environmental protection. In this research, 10 heavy metal elements (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, and Th) were tested and analyzed in 33 soil sample sites collected from the hinterland of the Tengger Desert, northern China. The results showed that the average abundance of Th exceeded its background soil value of China by more than 5.2 times, which suggests that the Tengger Desert is polluted by Th. In addition, based on principal component analysis, spatial differentiation, and correlation analysis, we identified the source of element with a coefficient of variation in abundance of greater than 0.5 or exceeding the background soil value of China. Principal component analysis and correlation analysis showed that the sources of heavy metals of Cr, Mn, Fe, Co, Ni, Cu, and Cd were similar, while those of Th and Zn were different. Moreover, based on the contents and spatial distribution characteristics of those heavy metal elements, we found that the formation of heavy metal elements enrichment areas is caused by industrial pollution, development of irrigated agricultural, geological, and geomorphic conditions, and the sedimentary environment in the study area. Our result can provide information on the environmental background values of soils in the hinterland of the Tengger Desert.

  • Effects of wind speed, underlying surface, and seed morphological traits on the secondary seed dispersal in the Tengger Desert, China

    分类: 生物学 >> 植物学 提交时间: 2024-04-15 合作期刊: 《干旱区科学》

    摘要: The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role. Based on field wind tunnel experiments using 11 common plant species on the southeastern edge of the Tengger Desert, China, we studied the secondary seed dispersal in the fixed and semi-fixed sand dunes as well as in the mobile dunes in order to understand the limitations of vegetation regeneration and the maintenance of its stability. Our results indicated that there were significant variations among the selected 11 plant species in the threshold of wind speed (TWS). The TWS of Caragana korshinskii was the highest among the 11 plant species, whereas that of Echinops gmelinii was the lowest. Seed morphological traits and underlying surface could generally explain the TWS. During the secondary seed dispersal processes, the proportions of seeds that did not disperse (no dispersal) and only dispersed over short distance (short-distance dispersal within the wind tunnel test section) were significantly higher than those of seeds that were buried (including lost seeds) and dispersed over long distance (long-distance dispersal beyond the wind tunnel test section). Compared with other habitats, the mobile dunes were the most difficult places for secondary seed dispersal. Buried seeds were the easiest to be found in the semi-fixed sand dunes, whereas fixed sand dunes were the best sites for seeds that dispersed over long distance. The results of linear mixed models showed that after controlling the dispersal distance, smaller and rounder seeds dispersed farther. Shape index and wind speed were the two significant influencing factors on the burial of seeds. The explanatory power of wind speed, underlying surface, and seed morphological traits on the seeds that did not disperse and dispersed over short distance was far greater than that on the seeds that were buried and dispersed over long distance, implying that the processes and mechanisms of burial and long-distance dispersal are more complex. In summary, most seeds in the study area either did not move, were buried, or dispersed over short distance, promoting local vegetation regeneration.

  • Spatiotemporal characteristics of seed rain and soil seed bank of artificial Caragana korshinskii Kom. forest in the Tengger Desert, China

    分类: 生物学 >> 植物学 提交时间: 2024-04-15 合作期刊: 《干旱区科学》

    摘要: Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas. However, the self-succession ability of native plants during the later periods of vegetation restoration remains unclear. Therefore, this study was conducted to bridge the knowledge gap by investigating the regeneration dynamics of artificial forest under natural conditions. The information of seed rain and soil seed bank was collected and quantified from an artificial Caragana korshinskii Kom. forest in the Tengger Desert, China. The germination tests were conducted in a laboratory setting. The analysis of species quantity and diversity in seed rain and soil seed bank was conducted to assess the impact of different durations of sand fixation (60, 40, and 20 a) on the progress of vegetation restoration and ecological conditions in artificial C. korshinskii forest. The results showed that the top three dominant plant species in seed rain were Echinops gmelinii Turcz., Eragrostis minor Host., and Agropyron mongolicum Keng., and the top three dominant plant species in soil seed bank were E. minor, Chloris virgata Sw., and E. gmelinii. As restoration period increased, the density of seed rain and soil seed bank increased first and then decreased. While for species richness, as restoration period increased, it gradually increased in seed rain but decreased in soil seed bank. There was a positive correlation between seed rain density and soil seed bank density among all the three restoration periods. The species similarity between seed rain or soil seed bank and aboveground vegetation decreased with the extension of restoration period. The shape of the seeds, specifically those with external appendages such as spines and crown hair, clearly had an effect on their dispersal, then resulting in lower seed density in soil seed bank. In addition, precipitation was a crucial factor in promoting rapid germination, also resulting in lower seed density in soil seed bank. Our findings provide valuable insights for guiding future interventions during the later periods of artificial C. korshinskii forest, such as sowing and restoration efforts using unmanned aerial vehicles.