按提交时间
按主题分类
按作者
按机构
  • The 100-m X-ray Test Facility at IHEP

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The 100-m X-ray Test Facility of the Institute of High Energy Physics (IHEP) was initially proposed in 2012 for the test and calibration of the X-ray detectors of the Hard X-ray Modulation Telescope (HXMT) with the capability to support future X-ray missions. The large instrument chamber connected with a long vacuum tube can accommodate the X-ray mirror, focal plane detector and other instruments. The X-ray sources are installed at the other end of the vacuum tube with a distance of 105 m, which can provide an almost parallel X-ray beam covering 0.2$\sim$60 keV energy band. The X-ray mirror modules of the Einstein Probe (EP) and the enhanced X-ray Timing and Polarimetry mission (eXTP) and payload of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) have been tested and calibrated with this facility. It has been also used to characterize the focal plane camera and aluminum filter used on the Einstein Probe. In this paper, we will introduce the overall configuration and capability of the facility, and give a brief introduction of some calibration results performed with this facility.

  • The 100-m X-ray Test Facility at IHEP

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The 100-m X-ray Test Facility of the Institute of High Energy Physics (IHEP) was initially proposed in 2012 for the test and calibration of the X-ray detectors of the Hard X-ray Modulation Telescope (HXMT) with the capability to support future X-ray missions. The large instrument chamber connected with a long vacuum tube can accommodate the X-ray mirror, focal plane detector and other instruments. The X-ray sources are installed at the other end of the vacuum tube with a distance of 105 m, which can provide an almost parallel X-ray beam covering 0.2$\sim$60 keV energy band. The X-ray mirror modules of the Einstein Probe (EP) and the enhanced X-ray Timing and Polarimetry mission (eXTP) and payload of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) have been tested and calibrated with this facility. It has been also used to characterize the focal plane camera and aluminum filter used on the Einstein Probe. In this paper, we will introduce the overall configuration and capability of the facility, and give a brief introduction of some calibration results performed with this facility.

  • In-orbit performance of LE onboard Insight-HXMT in the first 5 years

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Purpose: The Low-Energy X-ray telescope (LE) is a main instrument of the Insight-HXMT mission and consists of 96 Swept Charge Devices (SCD) covering the 1-10 keV energy band. The energy gain and resolution are continuously calibrated by analysing Cassiopeia A (Cas A) and blank sky data, while the effective areas are also calibrated with the observations of the Crab Nebula. In this paper, we present the evolution of the in-orbit performances of LE in the first 5 years since launch. Methods: The Insight-HXMT Data Analysis Software package (HXMTDAS) is utilized to extract the spectra of Cas A, blank sky, and Crab Nebula using different Good Time Interval (GTI) selections. We fit a model with a power-law continuum and several Gaussian lines to different ranges of Cas A and blank sky spectra to get peak energies of their lines through xspec. After updating the energy gain calibration in CALibration DataBase (CALDB), we rerun the Cas A data to obtain the energy resolution. An empirical function is used to modify the simulated effective areas so that the background-subtracted spectrum of the Crab Nebula can best match the standard model of the Crab Nebula. Results: The energy gain, resolution, and effective areas are calibrated every month. The corresponding calibration results are duly updated in CALDB, which can be downloaded and used for the analysis of Insight-HXMT data. Simultaneous observations with NuSTAR and NICER can also be used to verify our derived results. Conclusion: LE is a well calibrated X-ray telescope working in 1-10 keV band. The uncertainty of LE gain is less than 20 eV in 2-9 keV band and the uncertainty of LE resolution is less than 15eV. The systematic errors of LE, compared to the model of the Crab Nebula, are lower than 1.5% in 1-10 keV.

  • In-orbit performance of LE onboard Insight-HXMT in the first 5 years

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Purpose: The Low-Energy X-ray telescope (LE) is a main instrument of the Insight-HXMT mission and consists of 96 Swept Charge Devices (SCD) covering the 1-10 keV energy band. The energy gain and resolution are continuously calibrated by analysing Cassiopeia A (Cas A) and blank sky data, while the effective areas are also calibrated with the observations of the Crab Nebula. In this paper, we present the evolution of the in-orbit performances of LE in the first 5 years since launch. Methods: The Insight-HXMT Data Analysis Software package (HXMTDAS) is utilized to extract the spectra of Cas A, blank sky, and Crab Nebula using different Good Time Interval (GTI) selections. We fit a model with a power-law continuum and several Gaussian lines to different ranges of Cas A and blank sky spectra to get peak energies of their lines through xspec. After updating the energy gain calibration in CALibration DataBase (CALDB), we rerun the Cas A data to obtain the energy resolution. An empirical function is used to modify the simulated effective areas so that the background-subtracted spectrum of the Crab Nebula can best match the standard model of the Crab Nebula. Results: The energy gain, resolution, and effective areas are calibrated every month. The corresponding calibration results are duly updated in CALDB, which can be downloaded and used for the analysis of Insight-HXMT data. Simultaneous observations with NuSTAR and NICER can also be used to verify our derived results. Conclusion: LE is a well calibrated X-ray telescope working in 1-10 keV band. The uncertainty of LE gain is less than 20 eV in 2-9 keV band and the uncertainty of LE resolution is less than 15eV. The systematic errors of LE, compared to the model of the Crab Nebula, are lower than 1.5% in 1-10 keV.

  • Insight-HXMT observations of the first binary neutron star merger GW170817

    分类: 物理学 >> 普通物理:统计和量子力学,量子信息等 提交时间: 2017-11-10

    摘要: Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, osmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and Fermi/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard Insight-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area (~1000 cm2) and microsecond time resolution in 0.2-5 MeV. In addition, Insight-HXMT quickly implemented a Target of Opportunity (ToO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although Insight-HXMT did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the nexpected weak and soft nature of GRB 170817A. Meanwhile, Insight-HXMT/HE provides one of the most stringent constraints (~10-7 to 10-6 erg/cm2/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of Insight-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.