• Thickness dependent dark exciton emission in (PEA)2PbI4 nanoflake and its brightening by in-plane magnetic field

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Halide perovskite materials raised tremendous interest in recent years since their cheap fabrication, superior performance in both solar cell and light emitting diode (LED). Due to the existence of layered quantum well structure, quasi two-dimensional(2D) halide perovskite has more intriguing spin related physics than its 3D counterpart. For instance, the detection and brightening of dark exciton (DX) in 2D halide perovskite attracts much attention since these species can be used in opto-spintronic and quantum computing devices. Here, we report the gradually brightened emission of the DX at 2.33 eV with the thickness decreases in (PEA)2PbI4 single crystalline nanoflake, which hitherto has not been reported. By coupling with in-plane (IP) magnetic field in Voigt configuration, the DX emission can be sharply enhanced, while for the out-of-plane (OP) magnetic field in Faraday configuration, the DX emission has no noticeable change, which can be reconciled with the theory interpretation of magnetic field dependent wave function mixing between the four exciton states fi1, fi2, fi3- , fi3+. The emission of DX fi2 at 2.335 eV and the fine splitting of all the four states are observed in static PL spectroscopy for the first time. Our work thus clarifies the debating questions regarding to previous research on DX behavior in 2D halide perovskite material and sheds light on the road of realizing opto-spintronic or quantum computing devices with these materials.

  • Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Realizing optical manipulation of microscopic objects is crucial in the research fields of life science, condensed matter physics and physical chemistry. In non-liquid environments, this task is commonly regarded as difficult due to strong adhesive surface force ($\sim\mu\rm N$) between solid interfaces that makes tiny optical driven force ($\sim\rm pN$) insignificant. Here, by recognizing the microscopic interaction mechanism between friction force -- the parallel component of surface force on the contact surface -- and thermoelastic waves induced by pulsed optical absorption, we establish a general principle enabling the actuation of micro-objects on dry frictional surfaces based on the opto-thermo-mechanical effects. Theoretically, we predict that nanosecond pulsed optical absorption with mW-scale peak power is sufficient to tame $\mu\rm N$-scale friction force. Experimentally, we demonstrate that two-dimensional spiral motion of gold plates on micro-fibers driven by a nanosecond pulsed laser, and reveal the specific rules of motion control. Our results pave the way for future development of micro-scale actuators in nonliquid environments.

  • Organic metallic epsilon-near-zero materials with large ultrafast optical nonlinearity

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Epsilon-near-zero (ENZ) materials have shown significant potential for nonlinear optical applications due to their ultrafast hot carriers and consequent optical nonlinearity enhancement. Modified poly(3,4-ethylenedioxythiophene) (PEDOT) films show metallic characteristics and a resultant ENZ wavelength near 1550nm through polar solvent treatment and annealing. The metallic PEDOT film exhibits an intrinsic optical nonlinear response that is comparable to gold and 100-fold higher than typical inorganic semiconductor ENZ materials due to {\pi}-conjugated delocalized electrons. Hot carriers generate a 22-fold increase in the optical nonlinearity coefficient of metallic PEDOT films at 1550 nm. Hot holes in metallic PEDOT films have a smaller enhancement multiple of carrier temperature and a longer relaxation time than hot electrons in inorganic ENZ materials due to the larger imaginary permittivity and hot-phonon bottleneck for carrier cooling. Our findings suggest that {\pi}-conjugated ENZ polymer may have unique ultrafast and nonlinear optical properties compared to inorganic ENZ materials, enabling new possibilities in on-chip nanophotonic devices, nonlinear optics, and plasmonics.