• Synthetic red supergiant explosion model grid for systematic characterization of Type II supernovae

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: A new model grid containing 228,016 synthetic red supergiant explosions (Type II supernovae) is introduced. Time evolution of spectral energy distributions from 1 A to 50,000 A (100 frequency bins in a log scale) is computed at each time step up to 500 days after explosion in each model. We provide light curves for the filters of the Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST), Zwicky Transient Facility (ZTF), Sloan Digital Sky Servey (SDSS), and the Neil Gehrels Swift Observatory, but light curves for any photometric filters can be constructed by convolving any filter response functions to the synthetic spectral energy distributions. We also provide bolometric light curves and photosphere information such as photospheric velocity evolution. The parameter space covered by the model grid is five progenitor masses (10, 12, 14, 16, and 18 Msun at the zero-age main sequence, solar metallicity), ten explosion energies (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 x 10^51 erg), nine 56Ni masses (0.001, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, and 0.3 Msun), nine mass-loss rates (1e-5.0, 1e-4.5, 1e-4.0, 1e-3.5, 1e-3.0, 1e-2.5, 1e-2.0, 1e-1.5, and 1e-1.0 Msun/yr with a wind velocity of 10 km/s), six circumstellar matter radii (1, 2, 4, 6, 8, and 10 x 10^14 cm), and ten circumstellar structures (beta = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0). 56Ni is assumed to be uniformly mixed up to the half mass of a hydrogen-rich envelope. This model grid can be a base for rapid characterizations of Type II supernovae with sparse photometric sampling expected in LSST through a Bayesian approach, for example. The model grid is available at https://doi.org/10.5061/dryad.pnvx0k6sj.

  • EMPRESS. IX. Extremely Metal-Poor Galaxies are Very Gas-Rich Dispersion-Dominated Systems: Will JWST Witness Gaseous Turbulent High-z Primordial Galaxies?

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present kinematics of 6 local extremely metal-poor galaxies (EMPGs) with low metallicities ($0.016-0.098\ Z_{\odot}$) and low stellar masses ($10^{4.7}-10^{7.6} M_{\odot}$). Taking deep medium-high resolution ($R\sim7500$) integral-field spectra with 8.2-m Subaru, we resolve the small inner velocity gradients and dispersions of the EMPGs with H$\alpha$ emission. Carefully masking out sub-structures originated by inflow and/or outflow, we fit 3-dimensional disk models to the observed H$\alpha$ flux, velocity, and velocity-dispersion maps. All the EMPGs show rotational velocities ($v_{\rm rot}$) of 5--23 km s$^{-1}$ smaller than the velocity dispersions ($\sigma_{0}$) of 17--31 km s$^{-1}$, indicating dispersion-dominated ($v_{\rm rot}/\sigma_{0}=0.29-0.80<1$) systems affected by inflow and/or outflow. Except for two EMPGs with large uncertainties, we find that the EMPGs have very large gas-mass fractions of $f_{\rm gas}\simeq 0.9-1.0$. Comparing our results with other H$\alpha$ kinematics studies, we find that $v_{\rm rot}/\sigma_{0}$ decreases and $f_{\rm gas}$ increases with decreasing metallicity, decreasing stellar mass, and increasing specific star-formation rate. We also find that simulated high-$z$ ($z\sim 7$) forming galaxies have gas fractions and dynamics similar to the observed EMPGs. Our EMPG observations and the simulations suggest that primordial galaxies are gas-rich dispersion-dominated systems, which would be identified by the forthcoming James Webb Space Telescope (JWST) observations at $z\sim 7$.