注册 登录
EN | CN
  • 首页
  • 论文提交
  • 论文浏览
  • 论文检索
  • 个人中心
  • 帮助
按提交时间
  • 1
按主题分类
  • 1
  • 1
按作者
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
按机构
  • 1
  • 1
  • 1
  • 1
当前资源共 1条
隐藏摘要 点击量 时间 下载量
  • 1. ChinaXiv:202406.00064
    下载全文

    Prediction of Clock Bias for BeiDou Satellites Using a Combination of Variational Mode Decomposition and Long Short-Term Memory Network

    分类: 物理学 >> 地球物理学、天文学和天体物理学 分类: 信息科学与系统科学 >> 信息科学与系统科学基础学科 提交时间: 2024-06-09

    Wenlong Sun Fengfeng Shi Yuting Lin Jinfeng Xu Shaofeng He Yongxin Lin Guocheng Wang Run Zhao Pei Ma

    摘要: The precise estimation of the satellite clock bias (SCB) holds considerable importance in ensuring accurate timekeeping, navigation, and positioning. This studyintroduces a novel SCB prediction approach that integrates variational mode decomposition (VMD) and long short-term memory (LSTM) network techniques, combining signal decomposition with deep learning methodologies. Initially, the raw SCB data undergoespreprocessing, followed by decomposition using the VMD method to generate multiple intrinsic mode functions (IMFs). These decomposed IMFs serve as inputs for LSTM, where several independent LSTM models are established for training and prediction purposes. Subsequently, the predicted outcomes are aggregated and reconstructed to derive the finalSCB prediction. Experimental findings demonstrate notable advancements in clock bias prediction for the spaceborne hydrogen atomic clock for BDS, with prediction accuracies of 0.048 ns, 0.204 ns and 1.397 ns for 6 hours, 3 days and 15 days, respectively. These results exhibit significant enhancements compared to both the LSTM network and the Back Propagation (BP) neural network, with improvements of 56%, 84% and 83% for the aforementioned time intervals in comparison to LSTM, and enhancements of 59%, 82% and 83% relative to the BP neural network.

    同行评议状态:待评议

     点击量 2374  下载量 742  评论 0
友情链接 : PubScholar 哲学社会科学预印本
  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募预印本评审专家 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备110402500046号
版权所有© 2016 中国科学院文献情报中心