• Feedback from $\gamma$~Cassiopeiae: Large Expanding Cavity, Accelerating Cometary Globules, and Peculiar X-ray Emission

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present wide-field multi-wavelength observations of $\gamma$ Cassiopeiae (or $\gamma$~Cas for short) in order to study its feedback toward the interstellar environment. A large expanding cavity is discovered toward $\gamma$~Cas in the neutral hydrogen (HI) images at a systemic velocity of about -10 km/s. The measured dimension of the cavity is roughly 2.0 deg $\times$ 1.4 deg (or 6.0 pc $\times$ 4.2 pc at a distance of 168 pc), while the expansion velocity is about 5.0$\pm$0.5 km/s. The CO observations reveal systematic velocity gradients in IC63 (about 20 km/s/pc) and IC59 (about 30 km/s/pc), two cometary globules illuminated by $\gamma$~Cas, proving fast acceleration of the globules under stellar radiation pressure. The gas kinematics indicate that the cavity is opened by strong stellar wind, which has high potential to lead to the peculiar X-ray emission observed in $\gamma$~Cas. Our result favors a recent new scenario that emphasizes the roles of stellar wind and binarity in the X-ray emission of the $\gamma$~Cas stars.

  • On the Spatial Distribution of $^{13}$CO Structures within $^{12}$CO Molecular Clouds

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We look into the 2851 $^{12}$CO molecular clouds harboring $^{13}$CO structures to reveal the distribution of the projected angular separations and radial velocity separations between their internal $^{13}$CO structures. The projected angular separations are determined using the minimal spanning tree algorithm. We find that $\sim$ 50$\%$ of the angular separations fall in a narrow range of $\sim$ 3 - 7 arcmin with a median of $\sim$ 5 arcmin, and the corresponding radial velocity separations mainly range from $\sim$ 0.3 km s$^{-1}$ to 2.5 km s$^{-1}$. The mean and standard deviation of the angular separations of the internal $^{13}$CO structures within $^{12}$CO clouds appear to be universal, independent of the $^{12}$CO cloud angular areas and the counts of their internal $^{13}$CO structures. We also reveal a scaling relation between the $^{12}$CO cloud angular area and its harbored $^{13}$CO structure count. These results suggest there is a preferred angular separation between $^{13}$CO structures in these $^{12}$CO clouds, considering the distance effects. According to that, we propose an alternative picture for the assembly and destruction of molecular clouds: there is a fundamental separation for the internal structures of molecular clouds, the build-up and destruction of molecular clouds proceeds under this fundamental unit.

  • The Cassiopeia Filament: A Blown Spur of the Local Arm

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present wide-field and high-sensitivity CO(1-0) molecular line observations toward the Cassiopeia region, using the 13.7m millimeter telescope of the Purple Mountain Observatory (PMO). The CO observations reveal a large-scale highly filamentary molecular cloud within the Galactic region of 132\fdg0\,$\geq$\,$l$\,$\geq$\,122\fdg0 and -1\fdg0\,$\leq$\,$b$\,$\leq$\,3\fdg0 and the velocity range from approximately +1 to +4 km/s. The measured length of the large-scale filament, referred to as the Cassiopeia Filament, is about 390 pc. The observed properties of the Cassiopeia Filament, such as length, column density, and velocity gradient, are consistent with those synthetic large-scale filaments in the inter-arm regions. Based on its observed properties and location on the Galactic plane, we suggest that the Cassiopeia Filament is a spur of the Local arm, which is formed due to the galactic shear. The western end of the Cassiopeia Filament shows a giant arc-like molecular gas shell, which is extending in the velocity range from roughly -1 to +7 km/s. Finger-like structures, with systematic velocity gradients, are detected in the shell. The CO kinematics suggest that the large shell is expanding at a velocity of ~6.5 km/s. Both the shell and finger-like structures outline a giant bubble with a radius of ~16 pc, which is likely produced by stellar wind from the progenitor star of a supernova remnant. The observed spectral linewidths suggest that the whole Cassiopeia Filament was quiescent initially until its west part was blown by stellar wind and became supersonically turbulent.