• The Star Formation Rate of the Milky Way as seen by Herschel

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a new derivation of the Milky Way's current star formation rate (SFR) based on the data of the Hi-GAL Galactic plane survey. We estimate the distribution of the SFR across the Galactic plane from the star-forming clumps identified in the Hi-GAL survey and calculate the total SFR from the sum of their contributions. The estimate of the global SFR amounts to $2.0 \pm 0.7$~M$_{\odot}$~yr$^{-1}$, of which $1.7 \pm 0.6$~M$_{\odot}$~yr$^{-1}$ coming from clumps with reliable heliocentric distance assignment. This value is in general agreement with estimates found in the literature of last decades. The profile of SFR density averaged in Galactocentric rings is found to be qualitatively similar to others previously computed, with a peak corresponding to the Central Molecular Zone and another one around Galactocentric radius $R_\mathrm{gal} \sim 5$~kpc, followed by an exponential decrease as $\log(\Sigma_\mathrm{SFR}/[\mathrm{M}_\odot~\mathrm{yr}^{-1}~\mathrm{kpc}^{-2}])=a\,R_\mathrm{gal}/[\mathrm{kpc}]+b $, with $a=-0.28 \pm 0.01$. In this regard, the fraction of SFR produced within and outside the Solar circle is 84\% and 16\%, respectively; the fraction corresponding to the far outer Galaxy ($R_\mathrm{gal} > 13.5$~kpc) is only 1\%. We also find that, for $R_\mathrm{gal}>3$~kpc, our data follow a power law as a function of density, similarly to the Kennicutt-Schmidt relation. Finally, we compare the distribution of the SFR density across the face-on Galactic plane and those of median parameters, such as temperature, luminosity/mass ratio and bolometric temperature, describing the evolutionary stage of Hi-GAL clumps. We found no clear correlation between the SFR and the clump evolutionary stage.

  • ALMA-IMF VI -- Investigating the origin of stellar masses: Core mass function evolution in the W43-MM2&MM3 mini-starburst

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Among the most central open questions regarding the initial mass function (IMF) of stars is the impact of environment on the shape of the core mass function (CMF) and thus potentially on the IMF. The ALMA-IMF Large Program aims to investigate the variations in the core distributions with cloud characteristics, as diagnostic observables of the formation process and evolution of clouds. The present study focuses on the W43-MM2&MM3 mini-starburst, whose CMF has recently been found to be top-heavy with respect to the Salpeter slope. W43-MM2&MM3 harbors a rich cluster that contains a statistically significant number of cores, which was previously characterized in Paper III. We applied a multi-scale decomposition technique to the ALMA 1.3 mm and 3 mm continuum images to define six subregions. For each subregion we characterized the high column density probability distribution function, n-PDF, and the shape of the cloud gas using the 1.3 mm image. Using the core catalog, we investigate correlations between the CMF and cloud and core properties. We classify the subregions into different stages of evolution, from quiescent to burst to post-burst, based on the surface number density of cores, number of outflows, and UCHii presence. The high-mass end of the subregion CMFs varies from being close to the Salpeter slope (quiescent) to top-heavy (burst and post-burst). Moreover, the second tail of the n-PDF varies from steep, to flat like observed for the high mass star-forming clouds. We found that subregions with flat second n-PDF tails display top-heavy CMFs. The CMF may evolve from Salpeter to top-heavy throughout the star formation process from the quiescent to the burst phase. This scenario raises the question of if the CMF might revert again to Salpeter as the cloud approaches the end of its star formation stage, a hypothesis that remains to be tested.